Part Number Hot Search : 
NTE975 HCS12 BAS16 F1007 D7716EB JANSR2N UMZ12N 2A120
Product Description
Full Text Search
 

To Download CS61535A09 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Jul '09 CONFIDENTIAL
CS61535A
T1/E1 Line Interface
Features General Description
The CS61535A combines the complete analog transmit and receive line interface for T1 or E1 applications in a low power, 28-pin device operating from a +5V supply. The device features a transmitter jitter attenuator making it ideal for use in asynchronous multiplexor systems with gapped transmit clocks. The CS61535A provides a matched, constant impedance output stage to insure signal quality on mismatched, poorly terminated lines. The IC uses a digital Delay-Locked-Loop clock and data recovery circuit which is continuously calibrated from a crystal reference to provide excellent stability and jitter tolerance.
*
Provides Analog PCM Line Interface for T1 and E1 Applications Clock Recovery Functions
* Provides Line Driver, and Data and * Transmit Side Jitter Attenuation * Low Power Consumption
(typically 175 mW) Starting at 6 Hz, with > 300 UI of Jitter Tolerance
Applications
* * *
* B8ZS/HDB3/AMI Encoders/Decoders * 14 dB of Transmitter Return Loss * Compatible with SONET, M13 , CCITT
G.742, and Other Asynchronous Muxes
[ ] = Pin Function in Extended Hardware Mode ( ) = Pin Function in Host Mode XTALIN XTALOUT 9 TCLK TPOS [TDATA] TNEG [TCODE] RCLK RPOS [RDATA] RNEG [BPV] 2 3 4 8 7 6 LOOP BACK AMI, B8ZS, HDB3 CODER 10
Interfacing network transmission equipment such as SONET multiplexor and M13 to a DSX-1 cross connect. Interfacing customer premises equipment to a CSU. Interfacing to E1 links.
Ordering Information
CS61535A-IL1Z 28 Pin PLCC (Lead-free) CS61535A-IL1 28 Pin PLCC (j-leads)
(CLKE) (INT) (SDI) (SDO) MODE TAOS LEN0 LEN1 LEN2 5 28 23 24 PULSE SHAPER 25
TGND 14
TV+ 15
13
JITTER ATTENUATOR CONTROL 16
TTIP
CLOCK & DATA RECOVERY
TRING LINE DRIVER LINE RECEIVER 19 RTIP 20 RRING 17 MTIP [RCODE] 18 MRING [PCS] 11 DPM [AIS]
SIGNAL QUALITY MONITOR 27 1 12 21 22
DRIVER MONITOR
26
RLOOP LLOOP (CS) (SCLK)
ACLKI LOS
RV+ RGND
Crystal Semiconductor Corporation Cirrus Logic, Inc. http://www.cirrus.com P.O. Box 17847, Austin, TX 78760 (512) 445-7222 FAX: (512) 445-7581
Copyright Cirrus Logic, Inc.Semiconductor Corporation 1996 Copyright (c) Crystal 2009 (All Rights Reserved) Rights Reserved) (All
MAY '96 JUL '09 DS40F2 DS40F3 1
-XO &21),'(17,$/
ABSOLUTE MAXIMUM RATINGS
CS61535A
Symbol Min Max Units RV+ 6.0 V TV+ (RV+) + 0.3 V Input Voltage, Any Pin (Note 1) Vin RGND-0.3 (RV+) + 0.3 V Input Current, Any Pin (Note 2) Iin -10 10 mA Ambient Operating Temperature TA -40 85 C Storage Temperature Tstg -65 150 C WARNING:Operations at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. Notes: 1. Excluding RTIP, RRING, which must stay within -6V to (RV+) + 0.3V. 2. Transient currents of up to 100 mA will not cause SCR latch-up. Also TTIP, TRING, TV+ and TGND can withstand a continuous current of 100 mA. DC Supply
Parameter (referenced to RGND,TGND=0V)
RECOMMENDED OPERATING CONDITIONS
Parameter Symbol Min Typ Max Units DC Supply (Note 3) RV+, TV+ 4.75 5.0 5.25 V Ambient Operating Temperature TA -40 25 85 C Power Consumption (Notes 4, 5) PC 290 350 mW Power Consumption (Notes 4, 6) PC 175 mW Notes: 3. TV+ must not exceed RV+ by more than 0.3V. 4. Power consumption while driving line load over operating temperature range. Includes IC and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF load. 5. Assumes 100% ones density and maximum line length at 5.25V. 6. Assumes 50% ones density and 300ft. line length at 5.0V.
2
DS40F3
-XO &21),'(17,$/
CS61535A
DIGITAL CHARACTERISTICS (TA = -40C to 85C; TV+, RV+ = 5.0V 5%; GND = 0V)
Parameter Symbol Min Typ Max High-Level Input Voltage 2.0 Pins 1-4, 17, 18, 23-28 (Notes 7, 8, 9) VIH Low-Level Input Voltage Pins 1-4, 17, 18, 23-28 (Notes 7, 8, 9) VIL 0.8 High-Level Output Voltage (IOUT = -40 A) 4.0 VOH Pins 6-8, 11, 12, 25 (Notes 7, 8, 10) Low-Level Output Voltage (IOUT = 1.6 mA) 0.4 Pins 6-8, 11, 12, 23, 25 (Notes 7, 8, 10) VOL Input Leakage Current (Except Pin 5) 10 Low-Level Input Voltage, Pin 5 VIL 0.2 High-Level Input Voltage, Pin 5 VIH (RV+) - 0.2 Mid-Level Input Voltage, Pin 5 (Note 11) VIM 2.3 2.7 Notes: 7. This specification guarantees TTL compatibility (VOH = 2.4V @ IOUT = -40A). 8. In Host Mode, pin 23 is an open drain output and pin 25 is a tristate output. 9. Pins 17 and 18 of the CS61535A are digital inputs in the Extended Hardware Mode. 10. Output drivers will drive CMOS logic levels into a CMOS load. 11. As an alternative to supplying a 2.3-to-2.7V input, this pin may be left floating. Units V V V V A V V V
ANALOG SPECIFICATIONS
Parameter
(TA = -40C to 85C; TV+, RV+ = 5.0V 5%; GND = 0V) Min Typ Max Units
Jitter Attenuator Jitter Attenuation Curve Corner Frequency (Note 12) 6 Hz T1 Jitter Attenuation in Remote Loopback (Note 13) Jitter Freq. [Hz] Amplitude [UIpp] 10 10 3.0 6.0 dB 100 10 20 30 dB 500 10 35 35 dB 1k 5 40 50 dB 10k, 40k 0.3 40 50 dB E1 Jitter Attenuation in Remote Loopback (Note 14) Jitter Freq. [Hz] Amplitude [UIpp] 10 1.5 3.0 6.0 dB 100 1.5 20 32 dB 400 1.5 30 43 dB 1k 1.5 35 50 dB 10k, 100k 0.2 35 50 dB Attenuator Input Jitter Tolerance (Note 15) 12 23 UI Notes: 12. Not production tested. Parameters guaranteed by design and characterization. 13. Attenuation measured at the demodulator output of an HP3785B with input jitter equal to 3/4 of measured jitter tolerance using a measurement bandwidth of 1 Hz (10 1kHz) centered around the jitter frequency. With a 215-1 PRBS data pattern. Crystal must meet specifcations in Appendix A. 14. Jitter measured at the demodulator output of an HP3785A using a measurement bandwidth not to exceed 20 Hz centered around the jitter frequency. With a 215-1 PRBS data pattern. Crystal must meet specifications in Appendix A. 15. Output jitter increases significantly when attenuator input jitter tolerance is exceeded.
DS40F3 3
-XO &21),'(17,$/
ANALOG SPECIFICATIONS
CS61535A
(TA = -40C to 85C; TV+, RV+ = 5.0V 5%; GND = 0V)
Parameter Min Typ Max Units Transmitter AMI Output Pulse Amplitudes (Note 16) 2.14 2.37 2.6 V E1, 75 (Note 17) 2.7 3.0 3.3 V E1, 120 (Note 18) 2.7 3.0 3.3 V T1, FCC Part 68 (Note 19) 2.4 3.0 3.6 V T1, DSX-1 (Note 20) E1 Zero (space) level (LEN2/1/0 = 0/0/0) -0.237 0.237 V 75 application (Note 17) -0.3 0.3 V 120 application (Note 18) Recommended Output Load at TTIP and TRING 75 Jitter Added During Remote Loopback (Note 21) 0.005 0.02 UI 10Hz - 8kHz 0.008 0.025 UI 8kHz - 40kHz 0.010 0.025 UI 10Hz - 40kHz 0.015 0.05 UI Broad Band Power in 2kHz band about 772kHz (Notes 12, 16) 12.6 15 17.9 dBm Power in 2kHz band about 1.544MHz (Notes 12, 16) -29 -38 dB (referenced to power in 2kHz band at 772kHz) Positive to Negative Pulse Imbalance (Notes 12, 16) 0.2 0.5 dB T1, DSX-1 -5 5 % E1 amplitude at center of pulse -5 5 % E1 pulse width at 50% of nominal amplitude Transmitter Return Loss (Notes 12, 16, 22) 8 dB 51 kHz to 102 kHz 14 dB 102 kHz to 2.048 MHz 10 dB 2.048 MHz to 3.072 MHz Transmitter Short Circuit Current (Notes 12, 23) 50 mA RMS Notes: 16. Using a 0.47 F capacitor in series with the primary of a transformer recommended in the Applications Section. 17. Amplitude measured at the transformer (CS61535A-1:1 or 1:1.26) output across a 75 load for line length setting LEN2/1/0 = 0/0/0. 18. Amplitude measured at the transformer (CS61535A-1:1.26) output across a 120 load for line length setting LEN2/1/0 = 0/0/0. 19. Amplitude measured at the transformer (CS61535A-1:1.15) output across a 100 load for line length setting LEN2/1/0 = 0/1/0. 20. Amplitude measured across a 100 load at the DSX-1 cross-connect for line length settings LEN2/1/0 = 0/1/1, 1/0/0, 1/0/1, 1/1/0 and 1/1/1 after the length of #22 AWG ABAM equivalent cable specified in Table 3. The CS61535A requires a 1:1.15 transformer. 21. Input signal to RTIP/RRING is jitter free. Values will reduce slightly if jitter free clock is input to TCLK. 22. Return loss = 20 log10 ABS((z1 +z0)/(z1-z0)) where z1 = impedance of the transmitter, and z0 = impedance of line load. Measured with a repeating 1010 data pattern with LEN2/1/0 = 0/0/0 and a 1:1 transformer terminated with a 75 load, or a 1:1.26 transformer terminated with a 120 load. 23. Measured broadband through a 0.5 resistor across the secondary of a 1:1.26 transformer during the transmission of an all ones data pattern for LEN2/1/0 = 0/0/0.
4
DS40F3
-XO &21),'(17,$/
ANALOG SPECIFICATIONS
CS61535A
(TA = -40C to 85C; TV+, RV+ = 5.0V 5%; GND = 0V) Min Typ Max Units
Parameter Driver Performance Monitor MTIP/MRING Sensitivity: Differential Voltage Required for Detection Receiver RTIP/RRING Input Impedance Sensitivity Below DSX (0dB = 2.4V) Data Decision Threshold T1, DSX-1 T1, DSX-1 T1, FCC Part 68 and E1 Data Decision Threshold
-13.6 (Note 24) (Note 25) (Note 26) T1 E1 60 53 45 160
0.60 50k 65 65 50 65 50 175
70 77 55 190 % % % % %
V dB of peak of peak of peak of peak of peak bits
Allowable Consecutive Zeros before LOS Receiver Input Jitter Tolerance (Note 27) 0.4 UI 10kHz - 100kHz 6.0 UI 2kHz 300 UI 10Hz and below Loss of Signal Threshold (Note 28) 0.25 0.30 0.50 V Notes: 24. For input amplitude of 1.2 Vpk to 4.14 Vpk. 25. For input amplitude of 0.5 Vpk to 1.2 Vpk and from 4.14 Vpk to RV+. 26. For input amplitude of 1.05 Vpk to 3.3 Vpk. 27. Jitter tolerance increases at lower frequencies. See Figure 11. 28. LOS goes high after 160 to 190 consecutive zeros are received. A zero is output on RPOS and RNEG (or RDATA) for each bit period where the input signal amplitude remains below the data decision threshold. The analog input squelch circuit operates when the input signal amplitude above ground on the RTIP and RRING pins falls within the squelch range long enough for the internal slicing threshold to decay within this range. Operation of the squelch causes zeros to be output on RPOS and RNEG as long as the input amplitude remains below 0.25V. During receive LOS, pulses greater than 0.25V in amplitude may be output on RPOS and RNEG. LOS returns low after the ones density reaches 12.5% (based upon 175 bit periods starting with a one and containing less than 100 consecutive zeros) as prescribed in ANSI T1.231-1993.
DS40F3
5
-XO &21),'(17,$/
T1 SWITCHING CHARACTERISTICS
Parameter Crystal Frequency ACLKI Duty Cycle ACLKI Frequency RCLK Duty Cycle RCLK Cycle Width (Note 29) (Note 30) (Notes 31, 32) (Note 32)
CS61535A
(TA = -40C to 85C; TV+, RV+ = 5.0V 5%; GND = 0V; Inputs: Logic 0 = 0V, Logic 1 = RV+; See Figures 1, 2, & 3) Symbol fc tpwh3/tpw3 faclki tpwh1/tpw1 tpw1 tpwh1 tpwl1 tr tf tsu2 th2 tsu1 tsu1 tsu1 th1 th1 th1 ftclk tpwh2 Min 40 320 130 100 25 25 150 150 150 150 150 150 80 150 Typ 6.176000 1.544 78 29 648 190 458 274 274 274 274 274 274 1.544 Max 60 980 240 850 85 85 500 500 Units MHz % MHz % % ns ns ns ns ns ns ns ns ns ns ns ns ns MHz ns ns
Rise Time, All Digital Outputs (Note 33) Fall Time, All Digital Outputs (Note 33) TPOS/TNEG (TDATA) to TCLK Falling Setup Time TCLK Falling to TPOS/TNEG (TDATA) Hold Time RPOS/RNEG Valid Before RCLK Falling (Note 34) RDATA Valid Before RCLK Falling (Note 35) RPOS/RNEG Valid Before RCLK Rising (Note 31) RPOS/RNEG Valid After RCLK Falling (Note 34) RDATA Valid After RCLK Falling (Note 35) RPOS/RNEG Valid After RCLK Rising (Note 31) TCLK Frequency TCLK Pulse Width (Notes 12, 31, 34, 36, 37) (Notes 35, 36, 37) Notes: 29. Crystal must meet specifications described in Appendix A. 30. ACLKI provided by an external source or TCLK, but not RCLK. 31. Hardware Mode, or Host Mode (CLKE = 0). 32. RCLK cycle width will vary with extent by which pulses displaced by jitter. Specified under worst case jitter conditions: 0.4 UI AMI data displacement for T1 and 0.2 UI AMI data displacement for E1. 33. At max load of 1.6 mA and 50 pF. 34. Host Mode (CLKE = 1). 35. Extended Hardware Mode. 36. The maximum TCLK burst rate is 5 MHz and tpw2(min) = 200 ns. The maximum gap size that can be tolerated on TCLK is 12 VI. 37. The transmitted pulse width does not depend on the TCLK duty cycle.
tpw1 RCLK t pwl1 t su1 t pwh1 t h1 EXTENDED HARDWARE MODE OR HOST MODE (CLKE = 1)
RPOS RNEG RDATA BPV
RCLK
HARDWARE MODE OR HOST MODE (CLKE = 0)
Figure 1. Recovered Clock and Data Switching Characteristics 6 DS40F3
-XO &21),'(17,$/
E1 SWITCHING CHARACTERISTICS
Parameter Crystal Frequency ACLKI Duty Cycle ACLKI Frequency RCLK Duty Cycle RCLK Cycle Width (Note 29) (Note 30) (Notes 31, 32) (Note 32)
CS61535A
(TA = -40C to 85C; TV+, RV+ = 5.0V 5%; GND = 0V; Inputs: Logic 0 = 0V, Logic 1 = RV+; See Figures 1, 2, & 3) Symbol fc tpwh3/tpw3 faclki tpwh1/tpw1 tpw1 tpwh1 tpwl1 tpw1 tpwh1 tpwl1 tr tf tsu2 th2 tsu1 tsu1 tsu1 th1 th1 th1 ftclk tpwh2 Min 40 310 90 120 320 100 25 25 100 100 100 100 100 100 80 150 Typ 8.192000 2.048 29 488 140 348 488 348 140 194 194 194 194 194 194 2.048 Max 60 670 190 500 670 85 85 340 340 Units MHz % MHz % ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz ns ns
RCLK Cycle Width
(Note 32)
Rise Time, All Digital Outputs (Note 33) Fall Time, All Digital Outputs (Note 33) TPOS/TNEG (TDATA) to TCLK Falling Setup Time TCLK Falling to TPOS/TNEG (TDATA) Hold Time RPOS/RNEG Valid Before RCLK Falling (Note 34) RDATA Valid Before RCLK Falling (Note 35) RPOS/RNEG Valid Before RCLK Rising (Note 31) RPOS/RNEG Valid After RCLK Falling (Note 34) RDATA Valid After RCLK Falling (Note 35) RPOS/RNEG Valid After RCLK Rising (Note 31) TCLK Frequency TCLK Pulse Width (Notes 31, 34, 36, 37) (Notes 35, 36, 37)
tr 90% 10% 90%
tf
Any Digital Output
10%
Figure 2. Signal Rise and Fall Characteristics
t pw2 t pwh2
t pw3
TCLK t su2 TPOS/TNEG t h2
t pwh3 ACLKI
Figure 3a. Transmit Clock and Data Switching Characteristics DS40F3
Figure 3b. Alternate External Clock Characteristics
7
-XO &21),'(17,$/
SWITCHING CHARACTERISTICS
Inputs: Logic 0 = 0V, Logic 1 = RV+) (TA = -40 to 85C; TV+, RV+ = 5%;
CS61535A
Parameter Symbol Min Typ Max SDI to SCLK Setup Time tdc 50 SCLK to SDI Hold Time tcdh 50 SCLK Low Time tcl 240 SCLK High Time tch 240 SCLK Rise and Fall Time tr, tf 50 CS to SCLK Setup Time tcc 50 SCLK to CS Hold Time (Note 38) tcch 50 CS Inactive Time tcwh 250 SCLK to SDO Valid (Note 39) tcdv 200 CS to SDO High Z tcdz 100 Input Valid To PCS Falling Setup Time tsu4 50 PCS Rising to Input Invalid Hold Time th4 50 PCS Active Low Time tpcsl 250 Notes: 38. For CLKE = 0, CS must remain low at least 50 ns after the 16th falling edge of SCLK. 39. Output load capacitance = 50pF.
Units ns ns ns ns ns ns ns ns ns ns ns ns ns
t cwh CS t cc SCLK t dc SDI LSB CONTROL BYTE t cdh LSB DATA BYTE t cdh MSB t ch t cl t cch
Figure 4. Serial Port Write Timing Diagram
8
DS40F3
-XO &21),'(17,$/
CS61535A
CS t cdz SCLK t cdv SDO CLKE = 1
Figure 5. Serial Port Read Timing Diagram
HIGH Z
PCS t su4 LEN0/1/2, TAOS, RLOOP, LLOOP, RCODE, TCODE t pcsl
VALID INPUT DATA
th4
Figure 6. Extended Hardware Mode Parallel Chip Select Timing Diagram
DS40F3
9
-XO &21),'(17,$/
THEORY OF OPERATION Enhancements in CS61535A 7KH &6$ SURYLGHV KLJKHU SHUIRUPDQFH DQG PRUH IHDWXUHV WKDQ WKH &6 LQFOXGLQJ * * * * * * * * ORZHU SRZHU FRQVXPSWLRQ ,QWHUQDOO\ P DWFKHG WUD QVPLWWHU RX WSXW LP SHG DQFH IRU LPSURYHG VLJQDO TXDOLW\ 2SWLRQDO $0, %=6 +'% HQFRGHUGHFRGHU RU H[WHUQDO OLQH FRGLQJ VXSSRUW 5HFHLYHU $,6 XQIUDPHG DOO RQHV GHWHFWLRQ $16, 7 FR PSOLDQW U HFHLYHU / RVV RI 6LJQDO /26 KDQGOLQJ 7UDQVPLWWHU 7 7,3 D QG 7 5,1* R XWSXWV D UH IRUFHG ORZ ZKHQ 7&/. LV VWDWLF 7KH 'UL YHU 3HUI RUPDQFH 0RQLWRU RSHU DWHV RYHU D ZLGHU UDQJH RI LQSXW VLJQDO OHYHOV (OLPLQDWLRQ RI WK H U HTXLUHPHQW W KDW D U HIHU HQFH FORFN EH LQSXW RQ WKH $&/., SLQ
CS61535A
DV VKRZQ LQ 7DEOHV DQG )LJXUH DQG )LJXUHV $$ RI WKH $SSOLFDWLRQV VHFWLRQ 7KH &6 $ P RGHV DUH +DUGZDUH 0 RGH ([ WHQGHG +D UGZDUH 0RGH D QG +R VW 0RGH ,Q +DUGZDUH DQG ([WHQGHG +DUGZDUH 0RGHV GLVFUHWH SLQV DUH XVHG WR FRQILJXUH DQG PRQLWRU WKH GHYLFH 7KH ([WHQGHG +DUGZDUH 0RGH SURYLGHV D SDUDOOHO FKLS V HOHFW LQS XW Z KLFK O DWFKHV W KH F RQWURO LQ SXWV DOORZLQJ L QGLYLGXDO , &V WR E H FRQILJXUHG XVLQJ D FRPPRQ VHW RI FRQWURO OLQHV ,Q WKH +RVW 0RGH DQ H[WHUQDO SURFHVVRU PRQLWRUV DQG FRQILJXUHV WKH GH YLFH W KURXJK D VHU LDO L QWHUIDFH 7K HUH DUH WKLUWHHQ PXOWLIXQFWLRQ SLQV ZKRV H IXQFWLRQ DOLW\ L V GHW HU PLQHG E\ WKH RSHUDWLQJ PRGH VHH 7DEOH Transmitter 7KH WUDQVPLWWHU WDNHV GDWD IURP D 7 RU ( WHU PLQDO DWWHQXDWHV MLWWHU DQG SURGXFHV SX OVHV R I DSSURSULDWH V KDSH 7K H W UDQVPLW F ORFN 7& /. DQG WUDQVPLW GDWD 7326 71(* RU 7'$7$ DUH VXSSOLHG V\QFKURQRXVO\ 'DWD LV V DPSOHG RQ W KH IDOOLQJ HGJH RI WKH LQSXW FORFN 7&/. (LWKHU 7 '6; R U 1H WZRUN ,QW HUIDFH RU ( * SXO VH VKDSHV PD\ EH VH OHFWHG 3XOVH VK DS LQJ DQG VLJQ DO O HYHO DU H G HWHUPLQHG E\ OLQH OHQJWK V HOHFW LQ SXWV DV V KRZQ LQ 7 DEOH 7K H
MODE EXTENDED HARDWARE TDATA TCODE BPV RDATA AIS RCODE PCS LEN0 LEN1 LEN2 RLOOP LLOOP TAOS
([LVWLQJ GHVLJQV XVLQJ WKH &6 FDQ EH FRQYHUWHG WR WKH KLJKHU SHUIRUPDQFH SLQFRPSDWLEOH &6$ LI WKH WUDQVPLW WUDQVIRUPHU LV UHSODFHG E\ D SLQ FRP SDWLEOH WUDQVIRUPHU ZLWK D QHZ WXUQV UDWLR DQG WKH UHVLVWRU XVHG LQ ( DSSOLFDWLRQV LV VKRUWHG Introduction to Operating Modes 7KH &6 $ V XSSRUWV W KUHH R SHUDWLQJ P RGHV ZKLFK DUH VHOHFWHG E\ WKH OHYHO RI WKH 02'( SLQ
MODE EXTENDED HARDWARE HARDWARE HOST MODE-PIN FLOAT, or <0.2V >(RV+) - 0.2V INPUT LEVEL 2.5V INDIVIDUAL CONTROL SERIAL INDIVIDUAL CONTROL LINES & CONTROL -PROCESSOR METHOD PARALLEL LINES PORT CHIP SELECT LINE CODE AMI, ENCODER & NONE B8ZS, NONE DECODER HDB3 AIS DETECTION NO YES NO DRIVER PERFORMYES NO YES ANCE MONITOR
PIN 3 TRANSMITTER 4 6 7 RECEIVER/DPM 11 17 18 18 23 24 CONTROL 25 26 27 28
FUNCTION
HARDWARE TPOS TNEG RNEG RPOS DPM MTIP MRING LEN0 LEN1 LEN2 RLOOP LLOOP TAOS
HOST TPOS TNEG RNEG RPOS DPM MTIP MRING INT SDI SDO CS SCLK CLKE
Table 1. Differences in Operating Modes 10
Table 2. Pin Definitions DS40F3
-XO &21),'(17,$/
HARDWARE MODE
TAOS LLOOP RLOOP LEN0/1/2
CS61535A
CONTROL TPOS
TNEG
JITTER ATTENUATOR
TTIP LINE DRIVER
MRING MTIP TRING
TRANSMIT TRANSFORMER
CS62180B FRAMER CIRCUIT
CS61535A
RPOS RNEG
DRIVER MONITOR
DPM RTIP LINE RECEIVER
RRING
RECEIVE TRANSFORMER
EXTENDED HARDWARE MODE TCODE RCODE TAOS LLOOP RLOOP PCS LEN0/1/2
CONTROL TTIP TDATA AMI B8ZS, HDB3, CODER RDATA
JITTER ATTENUATOR
LINE DRIVER
TRING
TRANSMIT TRANSFORMER
HIGH SPEED MUX (e.g., M13)
CS61535A
RTIP
AIS DETECT
LINE RECEIVER
RRING
RECEIVE TRANSFORMER
BPV P SERIAL PORT 5
AIS HOST MODE CLKE
CONTROL TPOS TNEG CS62180B FRAMER CIRCUIT RPOS RNEG
CONTROL TTIP JITTER ATTENUATOR LINE DRIVER
MRING MTIP
TRING
TRANSMIT TRANSFORMER
CS61535A
DRIVER MONITOR
DPM RTIP
LINE RECEIVER
RRING
RECEIVE TRANSFORMER
Figure 7. Overview of Operating Modes
DS40F3
11
-XO &21),'(17,$/
LEN2 LEN1 LEN0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 OPTION SELECTED 0-133 FEET 133-266 FEET 266-399 FEET 399-533 FEET 533-655 FEET AT&T CB113 (CS61535A only) CCITT G.703 FCC Part 68, Option A ANSI T1.403 APPLICATION DSX-1 ABAM (AT&T 600B or 600C)
CS61535A
ZLGWK ZLO O PHH W W KH * SXOVH V KDSH W HPSODWH VKRZQ LQ )LJXUH DQG VSHFLILHG LQ 7DEOH )RU ( D SSOLFDWLRQV WK H & 6$ G ULYHU SUR YLGHV G% RI UHWXUQ ORVV GXULQJ WKH WUDQVPLVVLRQ RI ERW K PDUNV DQ G V SDFHV 7 KLV LPSURYHV V LJQDO TXDOLW\ E\ P LQLPL]LQJ U HIOHFWLRQV R II W KH W UDQV PLWWHU 6LPLODU O HYHOV R I UHW XUQ ORVV DUH SUR YLGHG IRU 7 DSSOLFDWLRQV 7KH &6 $ WU DQVPLWWHU Z LOO GHWHFW D IDLOHG 7&/. DQG ZLOO IRUFH WK H 77 ,3 DQ G 75 ,1* RXW SXWV ORZ
NORMALIZED AMPLITUDE 1.0
REPEATER 2.048 MHz E1 CSU NETWORK INTERFACE
Table 3. Line Length Selection
&6$ OLQH GULYHU LV GHVLJQHG WR GULYH D HTXLYDOHQW ORDG )RU 7 '6; DSSOLFDWLRQV OLQH OHQJWKV IURP WR IHHW DV PHDVXUHG IURP WKH WUDQVPLWWHU WR WKH '6; F URVV F RQQHFW DU H V HOHFWDEOH 7KH I LYH SDUWLWLRQ D UUDQJHPHQW P HHWV $16, 7 UHTXLUHPHQWV ZKHQ XVLQJ $%$0 FD EOH $ W\SLFDO RXWSXW SX OVH LV V KRZQ LQ )L JXUH 7 KHVH SX OVH VHWWLQJV FDQ DOVR EH XV HG WR P HHW && ,77 SX OVH VKDSH UHTXLUHPHQWV IRU 0+] RSHUDWLRQ )RU 7 1HWZRUN ,QWHUIDFH DSSOLFDWLRQV DGGLWLRQDO RSWLRQV DUH SURYLGHG 1RWH WKDW WKH RSWLPDO SXOVH ZLGWK IRU 3D UW QV LV QD UURZHU WKDQ WKH RSWLPDO SX OVH Z LGWK I RU ' 6; Q V 7 KH &6$ DXW RPDWLFDOO\ DG MXVWV WKH SXOVH ZLGW K EDVHG XSRQ WKH OLQH OHQJWK VHOHFWLRQ PDGH 7KH ( * SXOVH VKDSH LV VXSSRUWHG ZLWK OLQH OHQJWK V HOHFWLRQ / (1 7 KH S XOVH
AT&T CB 119 SPECIFICATION
0.5
0 CS61535A OUTPUT PULSE SHAPE -0.5 0 250 750 500 TIME (nanoseconds) 1000
Figure 8. Typical Pulse Shape at DSX-1 Cross Connect F or c o axi al cab le , For shielded twisted 75 loa d a nd pair, 120 load and transformer specified transformer specified in Application Section. in Application Section. 2.37 V 3V 0 0.237 V 0 0.30 V 244 ns
Nominal peak voltage of a mark (pulse) Peak voltage of a space (no pulse) Nominal pulse width Ratio of the amplitudes of positive and negative 0.95 to 1.05* pulses at the center of the pulse interval Ratio of the widths of positive and negative 0.95 to 1.05* pulses at the nominal half amplitude * When configured with a 0.47 F nonpolarized capacitor in series with the TX transformer primary as shown in Figures A1, A2 and A3. Table 4. CCITT G.703 Specifications 12
DS40F3
-XO &21),'(17,$/
Percent of nominal peak voltage 120 110 100 90 80 244 ns 194 ns
Attenuation in dB
CS61535A
0 a) Minimum Attenuation Limit 10 20 30 40 50 60 AT&T 62411 Requirements
269 ns
b) Maximum Attenuation Limit Measured Performance
50
1 10 100 1k 10 k Frequency in Hz
Figure 10. Typical Jitter Attenuation Curve
10 0 -10 -20 219 ns 488 ns Nominal Pulse
WDO WR V HW LW V R VFLOODWLRQ IUHTXHQF\ WR W KH DYHUDJH RI WKH 7& /. IUH TXHQF\ 6LJQDO MLW WHU LV DEV RUEHG LQ WKH ),)2 Jitter Tolerance of Jitter Attenuator 7KH ),)2 LQ W KH M LWWHU DWW HQXDWRU LV GH VLJQHG WR QHLWKHU R YHUIORZ QR U XQG HUIORZ ,I WKH MLW WHU D P SOLWXGH EHF RPHV Y HU\ OD UJH W KH U HDG DQ G Z ULWH SRLQWHUV P D\ JH W Y HU\ FORVH WRJ HWKHU 6KRX OG W KH SRLQWHUV D WWHPSW W R F URVV W KH RVFLOODWRUV G LYLGH E\ IRXU FLUFXLW DGMXVWV E\ SHUIRUPLQJ D GL YLGH E\ RU GL YLGH E\ WR SUH YHQW WKH RYH UIORZ RU X QGHUIORZ : KHQ D G LYLGH E \ RU RFFXUV WK H GDW D ELW ZLOO EH GULYHQ RQ WR WKH OL QH HLWKHU D Q H LJKWK ELW SH ULRG HD UO\ R U DQ H LJKWK E LW SHULRG ODWH :KHQ WKH 7&/. IUHTXHQF\ LV FORVH WR WKH FHQWHU IUHTXHQF\ R I W KH FU\VWDO RVFLOODWRU WK H K LJK IUH TXHQF\ MLWWHU WROHUDQFH LV 8, E HIRUH WKH GLYLGH E\ R U F LUFXLWU\ LV D FWLYDWHG $V W KH FHQWHU I UHTXHQF\ RI WKH RVFLOODWRU DQG WKH 7& /. IUHTXHQF\ GHYLDWH IURP RQ H DQRWKHU WKH MLWWHU WRO HUDQFH LV UHGXFHG $V WKLV I UHTXHQF\ GHYLDWLRQ EHFRPHV OD UJH W KH P D[LPXP M LWWHU WR OHUDQFH DW KLJK IUHTX HQFLHV LV UHG XFHG WR 8, E HIRUH WKH XQGHUIORZRYHUIORZ FL UFXLWU\ LV DFWLYDWHG ,Q DS SOLFDWLRQ L W L V X QOLNHO\ WK DW W KH R VFLOODWRU FHQ WHU IUHTXHQF\ Z LOO EH S UHFLVHO\ D OLJQHG ZL WK W KH
13
Figure 9 . Mask of the Pulse at the 2048 kbps Interface
:KHQ DQ \ W UDQVPLW FRQWURO SLQ 7$26 / (1 RU / /223 LV WRJJOHG WK H WUDQ VPLWWHU V WDELOL]HV ZLWKLQ ELW SHUL RGV 7K H WUD QVPLWWHU ZLOO WDN H ORQJHU WR VW DELOL]H ZKH Q 5/ 223 L V V HOHFWHG E H FDXVH WKH WLPLQJ FLUFXLWU\ PXVW DGMXVW WR WKH QHZ IUHTXHQF\ Jitter Attenuator 7KH MLWWHU DWWHQXDWRU LV GHVLJQHG WR U HGXFH ZDQGHU DQG M LWWHU L Q W KH W UDQVPLW F ORFN V LJQDO ,W F RQVLVWV RI D ELW ),)2 D FU\VWDO RVFLOODWRU D VHW RI ORDG FDSDFLWRUV IRU W KH F U\VWDO D QG F RQWURO O RJLF 7 KH MLWWHU DWWHQXDWRU H[ FHHGV WKH MLW WHU DWW HQXDWLRQ UH TXLUHPHQWV RI 3XEOLFDWLRQV DQG 5( & * $ W\SLFDO MLWWHU DWWHQXDWLRQ FXUYH LV VKRZQ LQ )LJXUH 7KH MLWWHU DWWHQXDWRU ZRUNV LQ WKH IROORZLQJ PDQ QHU ' DWD R Q 732 6 D QG 7 1(* RU 7' $7$ DUH ZULWWHQ LQWR WKH MLWWHU DWWHQXDWRUV ),)2 E\ 7&/. 7KH UDWH DW ZKLFK GDWD LV UHDG RXW RI WKH ),)2 DQG WUDQVPLWWHG LV GHWHUPLQHG E\ WKH RVFLOODWRU /RJLF FLUFXLWV DGMXVW WKH FDSDFLWLYH ORDGLQJ RQ WKH FU\V
DS40F3
-XO &21),'(17,$/
1:2 RTIP Data Level Slicer RRING Data Sampling & Clock Extraction RPOS RNEG RCLK
CS61535A
Edge Detector
Clock Phase Selector
Continuously Calibrated Delay Line
ACLKI or Oscillator in Jitter Attenuator
Figure 11. Receiver Block Diagram
7&/. IUHTXHQF\ GXH W R D OORZDEOH 7 &/. W ROHU DQFH S DUW W R S DUW Y DULDWLRQV F U\VWDO W R F U\VWDO YDULDWLRQV D QG F U\VWDO WHPSH UDWXUH GUL IW 7 KH RV FLOODWRU WHQGV WR WUDFN ORZ IUHTXHQF\ MLWWHU VR MLWWHU WROHUDQFH LQFUHDVHV DV MLWWHU IUHTXHQF\ GHFUHDVHV 7KH FU\VWDO IUHTXHQF\ PXVW EH WLPHV WKH QRPL QDO VLJQDO IUHT XHQF\ 0+] IRU 0+] RSHUDWLRQ 0+ ] IRU 0+ ] D SSOLFD WLRQV , QWHUQDO FDSDFLWRU V ORDG W KH F U\VWDO FRQWUROOLQJ WKH RV FLOODWLRQ IUH TXHQF\ 7 KH FU\VWDO PXVW EH GHVLJQHG VR WKDW RYHU RSHUDWLQJ WHPSHUD WXUH WK H R VFLOODWRU I UHTXHQF\ UDQJH H [FHHGV WK H V\VWHP IUHTXHQF\ WROHUDQFH To obtain optimum SHUIRUPDQFH, the crystal used must meet the specifications in Appendix A Transmit All Ones Select 7KH WUDQVPLWWHU SURYLGHV IR U DOO RQH V L QVHUWLRQ D W WKH IUHTXHQF\ RI $&/., 7UDQVPLW DOO RQHV LV VH OHFWHG ZKH Q 7 $26 JRH V K LJK D QG F DXVHV FRQWLQXRXV RQ HV WR EH W UDQVPLWWHG RQ W KH O LQH 77,3 DQG 75,1* ,Q WKLV PRGH WKH 7326 DQG 71(* RU 7 '$7$ LQ SXWV DUH LJQRUHG $ 7$26 UHTXHVW ZLOO EH L JQRUHG L I UHPRWH ORR SEDFN L V L Q HIIHFW $& /., MLWWHU ZL OO EH D WWHQXDWHG 7$26 LV
QRW DYDLODEOH RQ WK H & 6$ ZKHQ $&/ ., L V JURXQGHG Receiver 7KH UHFHLYHU H[WUDFWV GDWD DQG FORFN IURP DQ $0, $OWHUQDWH 0DUN ,QYHUVLRQ FRGHG VLJQDO DQG RXW SXWV FORFN DQG V\QFKURQL]HG GDWD 7KH UHFHLYHU LV VHQVLWLYH WR V LJQDOV RYHU WKH HQWLUH UDQJH RI FDEOH OHQJWKV DQG U HTXLUHV QR HTXDOL]DWLRQ RU $/ %2 $XWRPDWLF /LQH %XLOG 2XW FLUFXLWV 7KH VLJQDO LV UHFHLYHG RQ ERW K HQG V RI D FHQ WHUWDSSHG FHQWHU JURXQGHG WU DQVIRUPHU 7 KH WU DQVIRUPHU LV FHQWHUWDSSHG RQ W KH ,& V LGH 7 KH FO RFN DQG GD WD UHFRYHU\ FLUFXLW H[FHHGV WKH MLWWHU WROHUDQFH VSHFL ILFDWLRQV R I 3XEO LFDWLRQV DPHQGHG 7 576< DQG &&,7 7 5( & * $ EORFN GLDJUDP RI WKH UHFHLYHU LV VKRZQ LQ )LJ XUH 7 KH WZR OHDGV RI WK H WUDQVIRUPHU 57,3 DQG 5 5,1* KD YH R SSRVLWH S RODULW\ DOORZLQJ WKH UHFHLYHU WR WUHDW 57,3 DQG 55,1* DV XQLSRODU VLJ QDOV &RP SDUDWRUV D UH XVHG WR G HWHFW S XOVHV R Q 57,3 DQG 55,1* 7KH FRPSDUDWRU WKUHVKROGV DUH G\QDPLFDOO\ HVWDEOLVKHG D W D SHUF HQW RI WK H SH DN OHYHO RI S HDN IRU ( RI SH DN IRU 7 ZLWK WKH VOLFLQJ OHYHO VHOHFWHG E\ /(1
14
DS40F3
-XO &21),'(17,$/
7KH UHFHLYHU XVHV DQ HGJH GHWHFWRU DQG D FRQWLQX RXVO\ F DOLEUDWHG G HOD\ O LQH W R J HQHUDWH W KH UHFRYHUHG FORFN 7 KH GH OD\ OL QH GLYLGHV LWV UH IHU HQFH FORFN $&/., RU WKH MLWWHU DW WHQXDWRUV RVFLOODWRU LQWR HT XDO GLYLVLRQV RU SKDVHV &RQ WLQXRXV FD OLEUDWLRQ DVVXUHV WL PLQJ D FFXUDF\ HYH Q LI WHPSHUDWXUH RU SRZHU VXSSO\ YROWDJH IOXFWXDWH 7KH OHDGLQJ HGJH RI D Q LQFRPLQJ GDWD SXOVH WULJ JHUV W KH F ORFN SK DVH V HOHFWRU 7 KH SKD VH VHOHFWRU FKRRVHV RQH RI WKH DYDLODEOH SKDVHV ZKLFK WKH GHOD\ OLQ H SURGXFHV IRU HD FK E LW S HULRG 7K H RX W SXW I URP WKH SK DVH VH OHFWRU I HHGV WKH FORFN DQG GDWD UHFRYHU\ FL UFXLWV ZKL FK JHQHUDWH W KH UHFRY HUHG FOR FN D QG VD PSOH WKH L QFRPLQJ VL JQDO DW DSSURSULDWH LQWHUYDOV WR UHFRYHU WKH GDWD 7KH MLWWHU WROHUDQFH R I WK H U HFHLYHU H[FHHGV WKDW V KRZQ L Q )LJXUH
CS61535A
WKH +RVW 0R GH & /.( G HWHUPLQHV WK H FO RFN SR ODULW\ IRU ZKLFK RXWSXW GDWD LV VWDEOH DQG YDOLG DV VKRZQ LQ 7DEOH
MODE (pin 5) LOW (<0.2V) HIGH (>(V+) - 0.2V) HIGH (>(V+) - 0.2V) MIDDLE (2.5V) CLKE (pin 28) X LOW DATA RPOS RNEG RPOS RNEG SDO RPOS RNEG SDO RDATA CLOCK RCLK RCLK RCLK RCLK SCLK RCLK RCLK SCLK RCLK Clock Edge for Valid Data Rising Rising Rising Rising Falling Falling Falling Rising Falling
HIGH
X
X = Don't care Table 5. Data Output/Clock Relationship
Jitter and Recovered Clock 7KH &6 $ D UH G HVLJQHG IR U H UURU IUH H F ORFN DQG G DWD UHFR YHU\ IURP DQ $0, H QFRGHG GDWD VWUHDP LQ WKH SUHVHQFH RI PRUH WKDQ XQLW LQWHU YDOV RI MLW WHU DW KL JK I UHTXHQF\ 7 KH F ORFN UHFRYHU\ FLUFXLW LV DOVR WROHUDQW RI ORQJ VWULQJV RI ]HURV 7 KH HGJH R I DQ L QFRPLQJ G DWD ELW FDX VHV WKH FLUFXLWU\ WR FKRRVH D SKDVH IURP WKH GHOD\ OLQH ZKLFK P RVW FOR VHO\ FR UUHVSRQGV ZLWK WK H DUULY DO WLPH RI WKH GDWD HGJH DQ G WKD W FOR FN SK DVH WULJ JHUV D SXOVH ZKLFK LV W\SLFDOO\ QV LQ GXUDWLRQ 7KLV SK DVH RI WKH GHO D\ OLQ H ZLOO FRQ WLQXH WR EH VHOHFWHG XQWLO D GDWD ELW DUULYHV ZKLFK LV FORVHU WR DQRWKHU RI WKH SKDVHV FDXVLQJ D QHZ SKDVH WR EH VH OHFWHG 7 KH OD UJHVW MXP S DO ORZHG DORQJ WKH GHOD\ OLQH LV VL[ SKDVHV :KHQ D Q L QSXW V LJQDO LV M LWWHU I UHH WK H S KDVH V H OHFWLRQ Z LOO R FFDVLRQDOO\ M XPS E HWZHHQ W ZR DGMDFHQW S KDVHV UHV XOWLQJ LQ 5&/ . ML WWHU ZLWK DQ DPSOLWXGH RI 8,SS 7KHVH VLQJOH SKDVH MXPSV D UH GXH WR GL IIHUHQFHV LQ I UHTXHQF\ RI W KH LQFRPLQJ GD WD DQ G WKH FDOLEUDWLRQ FOR FN LQS XW WR $&/., )RU 7 RSHUDWLRQ RI WKH &6$ WKH LQVWDQWDQHRXV SHULRG FDQ EH QV QV +] RU QV QV +] ZKHQ DGMDFHQW FORFN SKDVHV DUH FKRVHQ $V ORQJ DV WKH VDPH SKDVH LV FKRVHQ WKH
15
300 100
28 PEAK TO 10 PEAK JITTER (unit intervals) 1 .4
.1 0 10 100 300 700 1k JITTER FREQUENCY (Hz) 10k 100k
Figure 12. Input Jitter Tolerance of Receiver
7KH &6$ RXWSXWV D FORFN LPPHGLDWHO\ XSRQ SRZHUXS 7 KH F ORFN UHF RYHU\ FL UFXLW LV FDOL EUDWHG D QG W KH G HYLFH Z LOO OR FN R QWR WKH $0 , GDWD LQS XW LP PHGLDWHO\ ,I ORV V RI V LJQDO RFFXUV WKH 5 &/. IUH TXHQF\ ZLO O H TXDO WKH $&/ ., IUH TXHQF\ ,Q WKH +DUGZDUH 0RGH GDWD DW 5326 DQ G 51(* LV V WDEOH DQG PD\ EH VDPSOHG RQ WKH ULVLQJ HGJH RI WKH UHFRYHUHG FORFN ,Q WKH ([WHQGHG +DUGZDUH 0RGH GDWD DW 5'$7$ LV VWDEOH DQG PD\ EH V DP SOHG RQ WKH IDOOLQJ HGJH RI WKH UHFRYHUHG FORFN ,Q
DS40F3
-XO &21),'(17,$/
SHULRG ZLO O E H QV 6L PLODU F DOFXODWLRQV KRO G IRU WKH ( UDWH 7KH FORFN UHFRYHU\ FLUFXLW LV GHVLJQHG WR DFFHSW DW OHDVW 8, RI MLWWHU DW WKH UHFHLYHU 6LQFH WKH GDWD VWUHDP FRQWDLQV LQ IRUPDWLRQ R QO\ ZKHQ RQH V D UH WUDQVPLWWHG D FORFNGDWD UHFRYHU\ FLUFXLW PXVW DV VXPH D ] HUR ZKHQ QR VLJQDO LV PHDVXUHG GXULQJ D ELW SHULRG /LNHZLVH ZKHQ ]HURV DUH UHFHLYHG QR LQIRUPDWLRQ L V S UHVHQW WR X SGDWH W KH F ORFN UHFR Y HU\ FLUFXLW UHJDUGLQJ WKH WUHQG RI D VLJQDO ZKLFK LV MLWWHUHG 7KH UHVXOW LV WKDW WZR RQH V WKDW DUH VHSD UDWHG E\ D VWULQJ RI ]HUR V FDQ H[KLELW P D[LPXP GHYLDWLRQ LQ SXOVH DUULYDO WLPH )RU H[DPSOH RQH KDOI R I D SHULRG RI M LWWHU DW N+] RF FXUV LQ V ZKLFK LV 7 ELW SHULRGV ,I WKH MLWWHU DPSOL WXGH LV 8, WKHQ D RQH SUHFHGHG E\ VHYHQ ]HURV FDQ KD YH PD[ LPXP GLV SODFHPHQW LQ DUULYDO WLPH LH HLWKHU 8, WRR HDUO\ RU 8, WRR ODWH )RU WKH &6$ WKH GDWD UHFRYHU\ FLUFXLW FRUUHFWO\ DVVLJQV D UHF HLYHG ELW WR LW V SURSHU FORFN SHULRG LI LW LV GLV SODFHG E\ OHV V WKD Q RI D ELW SHULRG IURP LWV RSWLP DO OR FDWLRQ 7KHR UHWLFDOO\ WKL V ZRXOG JL YH D MLW WHU WRO HUDQFH RI 8, 7K H DF WXDO M LWWHU WROHU DQFH RI WKH &6$ LV RQO\ VOLJKWO\ OHVV WKDQ WKH LGHDO ,Q WKH H YHQW R I D PD[LPXP M LWWHU K LW W KH 5&/. FORFN S HULRG L PPHGLDWHO\ DGM XVWV WR D OLJQ LW VHOI ZLWK WKH LQFRPLQJ GDWD DQG SUHSDUH WR DF FXUDWHO\ SODFH W KH QH[W RQH ZK HWKHU LW DUULYHV RQ H S HULRG ODWHU RU DIW HU DQR WKHU VWULQJ RI ]H URV DQG LV GLV SODFHG E\ ML WWHU )RU D P D[LPXP HDUO \ MLWWHU KLW 5&/. ZLOO KDYH D SHULRG RI QV QV +] )RU D P D[LPXP ODWH MLWWHU KLW 5&/. ZLOO KDYH D SHULRG RI QV QV +] Loss of Signal Remote Loopback 5HFHLYHU ORVV RI VLJQDO LV LQ GLFDWHG XS RQ UH FHLY LQJ FR QVHFXWLYH ] HURV $ GLJ LWDO FR XQWHU FRXQWV UHFHLYHG ] HURV E DVHG RQ 5&/. F\ FOHV $ ]HUR LQSXW LV GHWHUPLQHG HLWKHU ZKHQ ]HURV DUH UH
CS61535A
FHLYHG RU ZK HQ W KH U HFHLYHG VL JQDO DP SOLWXGH GURSV EHORZ D 9 SHDN WKUHVKROG 7KH UHFH LYHU UHSR UWV ORV V RI V LJQDO E\ V HWWLQJ WKH /RVV RI 6LJQDO SLQ /26 KLJK ,I WKH VHULDO LQWHU IDFH L V X VHG WKH /26 E LW ZL OO E H V HW D QG DQ LQWHUUXSW LV VXHG RQ ,17 /26 ZLOO JR OR Z DQG IODJ WKH ,17 SLQ DJDLQ LI VHULDO ,2 LV XVHG ZKHQ D YD OLG V LJQDO LV GHW HFWHG 1RW H WK DW L Q WK H +RV W 0RGH /26 LV VLPXOWDQHRXVO\ DYDLODEOH IURP ERWK WKH UHJLVWHU DQG SLQ ,Q D ORVV RI VLJQDO VWDWH WKH 5&/. IUHTXHQF\ ZLOO EH HTXDO WR WKH $&/., IUHTXHQF\ VLQFH $&/., LV EHLQJ XVHG WR FDOLEUDWH WKH FORFN UHFRYHU\ FLUFXLW 5HFHLYHG GDWD LV RXWSXW RQ 5326 DQG 51(* RU 5'$7$ UHJDUGOHVV R I /2 6 V WDWXV 7K H /2 6 U H WXUQV WR ORJLF ]HUR ZKHQ WKH RQHV GHQVLW\ UHDFKHV EDVHG XSRQ ELW SHULRGV VWDULQJ ZLWK D RQH DQG FRQWDLQLQJ OHVV WKDQ FRQVHFXWLYH ]H URV D V S UHVFULEHG L Q $16, 7 $ SRZHUXS RU PDQXDO UHVHW ZLOO DOVR VHW /26 KLJK Local Loopback 7KH ORF DO O RRSEDFN P RGH WD NHV F ORFN DQ G GD WD SUHVHQWHG RQ 7 &/. 7 326 DQG 7 1(* RU 7'$7$ DQG RXW SXWV LW DW 5&/ . 532 6 DQG 51(* RU 5'$7$ /R FDO ORR SEDFN L V V HOHFWHG E\ WDNLQJ SLQ KLJK RU //223 PD\ EH VHOHFWHG XVLQJ WKH VHULDO L QWHUIDFH 7KH GDWD R Q W KH WUDQV PLWWHU LQS XWV L V WU DQVPLWWHG R Q WK H OL QH X QOHVV 7$26 LV VHOHFWHG WR FDXVH WKH WUDQVPLVVLRQ RI DQ DOO RQHV V LJQDO LQV WHDG 5HF HLYHU LQS XWV D UH LJ QRUHG ZKHQ ORFDO ORRSEDFN LV LQ HIIHFW 7KH MLWWHU DWWHQXDWRU LV QR W L QFOXGHG L Q WK H OR FDO ORR SEDFN GDWD SD WK 6H OHFWLRQ R I OR FDO OR RSEDFN RYH UULGHV WKH FKLSV ORVV RI VLJQDO UHVSRQVH
,Q UHPRWH ORRSEDFN WKH UHFRYHUHG FORFN DQG GDWD LQSXW RQ 57,3 DQ G 55,1* DUH VHQW WKUR XJK WKH MLWWHU DWWHQXDWRU DQG EDFN RXW RQ WKH OLQH YLD 77,3 DQG 75,1* 7KH UHFRYHUHG LQFRPLQJ VLJQDOV DUH DOVR V HQW WR 5&/ . 53 26 DQ G 51( * RU
DS40F3
16
-XO &21),'(17,$/
5'$7$ 5H PRWH ORRSEDFN L V V HOHFWHG E \ WD NLQJ SLQ KLJK RU 5/223 PD\ EH VHOHFWHG XVLQJ WKH VHULDO LQ WHUIDFH 6L PXOWDQHRXV V HOHFWLRQ R I OR FDO DQG UHPRWH ORRSEDFN PRGHV LV QRW YDOLG VHH 5H VHW ,Q WK H &6$ ( [WHQGHG +DUGZDUH 0RGH UH PRWH ORR SEDFN RFFXU V EHI RUH WKH OLQH FRGH HQFRGHUGHFRGHU LQVXULQJ WKDW WKH WUDQVPLWWHG VLJ QDO P DWFKHV WK H U HFHLYHG V LJQDO HYH Q LQ WKH SUHVHQFH R I UH FHLYHG E LSRODU YLRODWLRQV 7KH UH FRYHUHG G DWD ZLO O D OVR E H GH FRGHG D QG R XWSXW R Q 5'$7$ LI 5&2'( LV ORZ Driver Performance Monitor 7R DLG LQ HDUO\ GHWHF WLRQ DQ G HD V\ LV RODWLRQ RI QRQIXQFWLRQLQJ OLQNV WKH +DU GZDUH DQG + RVW 0RGHV RI WK H &6 $ DUH DEOH WR P RQLWRU WUDQVPLW GU LYH SHUIRUPDQFH DQG UHSRUW ZKHQ WKH GULYHU LV Q R O RQJHU R SHUDWLRQDO 7KLV IHD WXUH FD Q EH XV HG W R PRQL WRU HL WKHU WKH GH YLFHV SHUIRUP DQFH RU W KH SHUIRUPDQFH RI D QHL JKERULQJ GUL YHU 7KH GULYHU SHUIRUPDQFH PRQLWRU LQGLFDWRU LV Q RU PDOO\ DW D ORZ ]HUR ORJLF OHYHO DQG JRHV WR KLJK OHYHO XSR Q GH WHFWLQJ GU LYHU I DLOXUH , Q W KH + RVW 0RGH '30 LV DYD LODEOH IURP ERW K WKH UHJL VWHU DQG SLQ 7KH GULYHU SHUIRUPDQFH PRQLWRU FRQVLVWV RI DQ DF WLYLW\ GHWHFWRU WKDW PRQLWRUV WKH WUDQVPLWWHG VLJQDO ZKHQ 07,3 LV FRQQHFWHG WR 77,3 DQG 05,1* LV FRQQHFWHG WR 7 5,1* '30 ZLO O JR KL JK LI WK H DEVROXWH GL IIHUHQFH EH WZHHQ 07 ,3 DQ G 05, 1* GRHV QR W WU DQVLWLRQ D ERYH RU EH ORZ D W KUHVKROG OHYHO ZLWKLQ D WLPHRXW SHULRG :KHQHYHU PRUH WKDQ RQH OLQH LQWHUIDFH ,& UHVLGHV RQ WKH VDPH FLUFXLW ERDUG WKH HIIHFWLYHQHVV RI WKH GULYHU SHUIRUPDQFH PRQLWRU FDQ EH PD[LPL]HG E\ KDYLQJ HDFK ,& PRQL WRU SHUIRUPDQFH RI D Q HLJK ERULQJ GHY LFH UD WKHU WKD Q KD YLQJ LW P RQLWRU LWV RZQ SHUIRUPDQFH Line Code Encoder/Decoder
CS61535A
,Q ([WHQGHG +DUGZDUH 0RGH WKUHH OLQH FRGHV DUH DYDLODEOH $0, % =6 DQG +'% 7 KH L QSXW WR WKH HQFRGHU LV 7'$7$ 7KH RXWSXWV IURP WKH GH FRGHU DUH 5' $7$ DQG %39 %LSRODU 9 LRODWLRQ 6WUREH 7KH HQFRGHU DQG GHFRGHU DUH VHOHFWHG XV LQJ S LQV / (1 / (1 / (1 7&2'( D QG 5&2'( DV VKRZQ LQ 7DEOH
LEN 2/1/0 000 010-111 HDB3 B8ZS Encoder Encoder AMI Encoder HDB3 B8ZS Decoder Decoder AMI Decoder
TCODE (Transmit Encoder Selection) RCODE (Receiver Decoder Selection)
LOW HIGH LOW HIGH
Table 6. Selection of Encoder/Decoder
Alarm Indication Signal ,Q ([WHQGHG +DUGZDUH 0RGH WKH UHFHLYHU VHWV WKH RXWSXW S LQ $,6 KL JK ZKH Q OHV V WKDQ ]HURV DUH GHWHFWHG RXW RI ELW SHULRGV $,6 UHWXUQV ORZ ZKHQ RU PRUH ]H URV DUH GHW HFWHG RX W RI ELWV Parallel Chip Select ,Q ([WHQGHG +DUGZDUH 0RGH 3&6 FDQ EH XVHG WR JDWH WKH GLJLWDO FRQWURO LQSXWV 7&2'( 5&2'( /(1 / (1 / (1 5 /223 / /223 DQG 7$26 , QSXWV DU H DFFHSWHG RQ WKHV H SLQV RQO\ ZKHQ 3&6 LV ORZ &KDQJHV LQ LQSXWV ZLOO LPPHGL DWHO\ FKDQJH WKH RSHUDWLQJ V WDWH RI WKH GHYLFH 7KHUHIRUH ZKHQ F\FOLQJ 3&6 WR XSGDWH WKH RSHU DWLQJ V WDWH WKH GLJ LWDO FR QWURO LQS XWV V KRXOG E H VWDEOH IRU WKH HQWLUH 3&6 ORZ SHULRG 7KH FRQWURO LQSXWV DUH LJQRUHG ZKHQ 3&6 LV KLJK Power On Reset / Reset 8SRQ SRZHUXS WKH &6$ LV KHOG LQ D VWDWLF VWDWH X QWLO WK H V XSSO\ F URVVHV D WKUH VKROG RI DS
DS40F3
17
-XO &21),'(17,$/
CS SCLK SDI
CS61535A
R/W
0
0
0
0
1
0
0
D0 D0
D1 D1
Address/Command Byte SDO
D2 D3 D4 D5 Data Input/Output D2 D3 D4 D5
D6 D6
D7 D7
Figure 13. Input/Output Timing
SUR[LPDWHO\ WKUH H 9ROWV : KHQ W KLV WK UHVKROG LV FURVVHG W KH GHYLFH Z LOO GH OD\ I RU DE RXW PV W R DOORZ WKH SRZHU VXSSO\ WR UHDFK RSHUDWLQJ YROWDJH $IWHU WKLV GHOD\ FDOLEUDWLRQ RI WKH GHOD\ OLQHV XVHG LQ WKH WU DQVPLW DQ G U HFHLYH VHFW LRQV FR PPHQFHV 7KH GHOD\ OLQ HV FDQ EH FDO LEUDWHG RQ O\ LI D U HIHU HQFH FORFN LV S UHVHQW 7KH U HIHUHQFH FORFN IRU WKH UHFHLYHU LV SURYLGHG E\ $ &/., RU E\ WKH FU\VWDO RVFLOODWRU LI $&/., LV QRW SUHVHQW 7KH UHIHUHQFH FORFN IRU WKH WUDQVPLWWHU LV SURYLGHG E\ 7&/. 7KH LQLWLDO FDOLEUDWLRQ VKRXOG WDNH OHVV WKDQ PV ,Q RSHUDWLRQ WKH GHOD\ OLQHV DUH FRQWLQXRXVO\ FDOL EUDWHG P DNLQJ WK H SH UIRUPDQFH R I W KH G HYLFH LQGHSHQGHQW RI SRZHU VXSSO\ RU WHPSHUDWXUH YDUL DWLRQV 7 KH FRQWLQXRXV FDOLEUDWLRQ IX QFWLRQ IRUHJRHV D Q\ UH TXLUHPHQW WR UH VHW WK H OLQ H LQW HU IDFH ZKHQ LQ RSHUDWLRQ +RZHYHU D UHVHW IXQFWLRQ LV DYDLODEOH ZKLFK ZLOO FOHDU DOO UHJLVWHUV ,Q WKH +DUGZDUH DQG ([WHQGHG +DUGZDUH PRGHV D UHVHW UHTXHVW LV PDGH E\ VLPXOWDQHRXVO\ VHWWLQJ ERWK 5/223 DQG //223 KLJK IRU DW OHDVW QV 5HVHW ZLOO LQLWLDWH RQ WKH I DOOLQJ HGJH RI WKH UHV HW UHTXHVW IDOOLQJ HGJH RI 5/ 223 DQG / /223 ,Q WKH +RV W 0RGH D UHV HW LV LQLWLDWHG E\ VLPXOWDQHRXVO\ ZULWLQJ 5/223 DQG //223 WR WKH UHJLVWHU ,Q HLWKHU PRGH D UHVHW ZLOO VHW DOO UHJLVWHUV WR DQG VHW /26 KLJK Serial Interface ,Q WKH +RVW 0RGH SLQV WKURXJK VHUYH DV D PLFURSURFHVVRUPLFURFRQWUROOHU LQWHU IDFH 2QH HLJKWELW UHJLVWHU FDQ EH ZULWWHQ WR YLD WKH 6', SLQ RU UHDG IURP WKH 6'2 S LQ DW WKH FORFN UDWH GHWHU PLQHG E\ 6&/ . 7 KURXJK WKLV UHJLV WHU D KRV W FRQWUROOHU FDQ EH XVHG WR FRQWURO RSHUDWLRQDO FKDU
18
DFWHULVWLFV DQG P RQLWRU GHYLFH VW DWXV 7 KH V HULDO SRUW UHD GZULWH WL PLQJ LV LQG HSHQGHQW RI WKH V \V WHP WUDQVPLW DQG UHFHLYH WLPLQJ 'DWD WUDQVIHUV DUH LQLWLDWHG E\ WDNLQJ WKH FKLS VH OHFW L QSXW &6 O RZ &6 PXVW LQ LWLDOO\ E H K LJK 6&/. PD\ E H H LWKHU KL JK R U ORZ ZK HQ &6 L Q LWLDOO\ JRH V O RZ $GG UHVV D QG L QSXW GD WD E LWV DUH FORFNHG LQ RQ W KH UL VLQJ H GJH RI 6&/ . 'DWD RQ 6'2 LV YD OLG DQG V WDEOH RQ WKH IDOO LQJ HGJ H RI 6&/. ZKHQ &/.( LV ORZ DQG RQ WKH ULVLQJ HGJH RI 6&/. ZKHQ &/.( LV KLJ K 'DWD WUDQVIHUV DUH WHUPLQDWHG E\ V HWWLQJ &6 K LJK &6 PD\ J R KL JK QR VRRQHU WKDQ QV DIWHU WKH ULV LQJ HGJH RI WKH 6&/. F \FOH FR UUHVSRQGLQJ WR WKH ODV W ZULW H ELW )RU D VHULDO GD WD UHDG &6 PD\ JR KLJK DQ\ WLPH WR WHUPLQDWH WKH RXWSXW )LJXUH V KRZV WKH WLPLQJ UHODWLRQVKLSV IRU GD WD WUDQVIHUV ZKHQ &/.( :KHQ &/.( GDWD RXWSXW IURP WKH VHULDO SRUW 6'2 LV Y DOLG R Q W KH IDOOLQJ HGJH RI 6&/. )RU &/.( GDWD ELW ' LV KHOG WR WKH IDOOLQJ HGJH RI WKH WK FORFN F\FOH IRU & /.( G DWD EL W ' LV K HOG WR WK H UL VLQJ HGJH RI WK H WK FORFN F\FOH 6'2 JRHV WR D KL JK
Read/Write Select; 0 = write, 1 = read LSB of address, Must be 0 Must be 0 Must be 0 Must be 0 Must be 1 Reserved - Must be 0
LSB, first bit
0 1 2 3 4 5 6
R/W ADD0 ADD1 ADD2 ADD3 ADD4 -
Table 7. Address/Command Byte
DS40F3
-XO &21),'(17,$/
LPSHGDQFH VWDWH HLWKHU DIWHU ELW ' LV RXWSXW RU DW WKH HQG RI WKH KROG SHULRG RI GDWD ELW ' $Q D GGUHVVFRPPDQG E\W H V KRZQ L Q 7 DEOH SUHFHGHV D GDWD UHJLVWHU 7 KH I LUVW EL W RI WKH DG GUHVVFRPPDQG E \WH GH WHUPLQHV Z KHWKHU D U HDG RU D ZU LWH LV U HTXHVWHG 7K H QH[W VL[ ELW V FRQ WDLQ WKH DGG UHVV 7 KH &6 $ UHVSRQGV WR DGGUHVV 7KH ODVW ELW LV LJQRUHG 7KH GDWD UHJLVWHU VKRZQ LQ 7DEOH FDQ EH ZULW WHQ WR WKH VHULDO S RUW 'DWD L V LQSXW RQ WK H H LJKW FORFN F\F OHV L PPHGLDWHO\ I ROORZLQJ WK H DG GUHVVFRPPDQG E\WH %LWV DQG DU H XV HG WR FOHDU DQ LQW HUUXSW LVVXHG IURP WKH ,17 SLQ ZKLFK RFFXUV LQ UHVSRQVH WR D ORVV RI VLJQDO RU D SUREOHP ZLWK WKH RXWSXW GUL YHU ,I ELWV RU DUH WUX H WKH FRUUHVSRQGLQJ LQWHUUXSW LV VXSSUHVVHG 6R LI D ORVV RI VLJQDO LQWHUUXSW LV FOHDUHG E\ ZULWLQJ D W R ELW WKH LQWHUUXSW ZLOO EH UHHQDEOHG E\ ZULWLQJ D WR ELW 7KLV KROGV IRU '30 DV ZHOO
0 1 2 3 4 5 6 MSB: last bit in 7 LSB: first bit in clr LOS clr DPM LEN0 LEN1 LEN2 RLOOP LLOOP TAOS Clear Loss of Signal Clear Driver Performance Monitor Bit 0 - Line Length Select Bit 1 - Line Length Select Bit 2 - Line Lenght Select Remote Loopback Local Loopback Transmit All Ones Select LSB: first bit in 0 1 2 3 4 LOS DPM LEN0 LEN1 LEN2
CS61535A
Loss of Signal Driver Performance Monitor Bit 0 - Line Length Select Bit 1 - Line Length Select Bit 2 - Line Lenght Select
Table 9. Output Data Bits 0 - 4
Bits 567
Status

Reset has occurred or no program input. TAOS in effect. LLOOP in effect. TAOS/LLOOP in effect. RLOOP in effect DPM changed state since last "clear DPM" occured. LOS changed state since last "clear LOS" occured. LOS and DPM have changed state since last "clear LOS" and "clear DPM". Table 10. Coding for Serial Output Bits 5, 6, 7


:ULWLQJ D WR HLWKHU &OHDU /26 RU & OHDU '30 H QDEOHV W KH F RUUHVSRQGLQJ L QWHUUXSW I RU /26 RU '30 2XWSXW GDWD IURP WKH VHULDO LQWHUIDFH LV SUHVHQWHG DV VKRZQ LQ 7DEOHV DQG %LWV DQG FDQ EH UHDG W R YHULI\ O LQH OH QJWK V HOHFWLRQ %LWV DQG PXV W EH GH FRGHG &RGHV DQG ELWV DQ G LQ GLFDWH / 26 DQ G ' 30 V WDWH FKDQJHV :ULWLQJ D WR WKH &OHDU /26 DQGRU &OHDU '30 ELWV LQ WKH UHJLVWHU DOVR UHVHWV VWDWXV ELWV DQG 6'2 JRHV WR D KL JK LPSHGDQFH VWDWH ZKHQ QRW LQ XVH 6'2 DQG 6', PD\ EH WLHG WRJHWKHU LQ DSSOL FDWLRQV Z KHUH W KH KRVW S URFHVVRU KDV D ELGLUHFWLRQDO ,2 SRUW
Table 8. Input Data Register
:ULWLQJ D WR HLWKHU &OHDU / 26 RU &OHDU '30 RYHU WKH VHULDO LQWHUIDFH KDV WKUHH HIIHFWV WKH F XUUHQW L QWHUUXSW RQ WK H VH ULDO LQWHUIDFH ZLOO EH FOH DUHG 1RWH W KDW VL PSO\ U HDGLQJ WK H UHJLVWHU ELWV ZLOO QRW FOHDU WKH LQWHUUXSW RXWSXW GDWD ELWV D QG ZLOO EH UHVHW DV DSSURSULDWH IXWXUH LQWHUUXSWV IRU W KH FRUUHVSRQGLQJ /26 RU '30 ZLOO EH SUHYHQWHG IURP RFFXULQJ
DS40F3
19
-XO &21),'(17,$/
Power Supply 7KH GHYLFH RSHUDWHV IURP D VLQJOH 9ROW VXSSO\ 6HSDUDWH SL QV I RU WU DQVPLW DQ G U HFHLYH V XSSOLHV SURYLGH LQ WHUQDO L VRODWLRQ 7 KHVH SL QV VKRXOG EH FRQQHFWHG H[W HUQDOO\ QHDU WK H GHY LFH DQG GHFRX SOHG WR WKHLU UH VSHFWLYH JUR XQGV 7 9 PXVW QR W H[FHHG 59 E\ PRUH WKDQ 9 'HFRXSOLQJ DQG ILOWHULQJ RI WKH SRZHU VXSSOLHV LV FUXFLDO IRU WKH SURSHU RSHUDWLRQ RI WKH DQDORJ FLU FXLWV LQ ERWK WKH WUDQVPLW DQG UHFHLYH SDWKV $ ) FDSDFLWRU VKRXOG E H F RQQHFWHG EHWZHHQ 7 9 DQG 7*1' DQG D ) FDSDFLWRU VKRXOG EH FRQ QHFWHG EHW ZHHQ 59 DQG 5*1' 8VH P \ODU RU FHUDPLF F DSDFLWRUV DQG SOD FH W KHP DV FOR VHO\ DV SRVVLEOH WR WKHLU UHVSHFWLYH SRZHU VXSSO\ SLQV $ ) WD QWDOXP FD SDFLWRU VKRXOG EH DGG HG FO RVH WR W KH 5 95*1' V XSSO\ : LUH ZU DS EU HDG ERDUGLQJ RI WKH OLQH LQWHUIDFH LV QRW UHFRPPHQGHG EHFDXVH O HDG U HVLVWDQFH D QG LQGXFWDQFH V HUYH W R GHIHDW WKH IXQFWLRQ RI WKH GHFRXSOLQJ FDSDFLWRUV
CS61535A
Schematic & Layout Review Service
Confirm Optimum Schematic & Layout Before Building Your Board. For Our Free Review Service Call Applications Engineering.
Call: (512) 445-7222
20
DS40F3
-XO &21),'(17,$/
PIN DESCRIPTIONS Hardware Mode
ACLKI 1 TAOS +DUGZDUH 0RGH 3LQRXW 28 TCLK 2 LLOOP 27 TPOS 3 RLOOP 26 TNEG 4 LEN2 25 MODE 5 LEN1 24 RNEG 6 LEN0 23 RPOS 7 RGND 22 RCLK 8 RV+ 21 XTALIN 9 RRING 20 XTALOUT 10 RTIP 19 18 DPM 11 MRING 17 LOS 12 MTIP 16 TTIP 13 TRING 15 TGND 14 TV+
CS61535A
ACLKI TCLK TPOS TNEG MODE RNEG RPOS RCLK XTALIN XTALOUT DPM LOS TTIP TGND
5 6 7 8 9 10 11 12 13 14 15 16 17 18 top view 4 3 2 1 28 27 26 25 24 23 22 21 20 19
TAOS LLOOP RLOOP LEN2 LEN1 LEN0 RGND RV+ RRING RTIP MRING MTIP TRING TV+
DS40F3
21
-XO &21),'(17,$/
CS61535A
Extended Hardware Mode
([WHQGHG +DUGZDUH 0RGH 3LQRXW
ACLKI TCLK TDATA TCODE MODE BPV RDATA RCLK XTALIN XTALOUT AIS LOS TTIP TGND
1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15
TAOS LLOOP RLOOP LEN2 LEN1 LEN0 RGND RV+ RRING RTIP PCS RCODE TRING TV+
ACLKI TCLK TDATA TCODE MODE BPV RDATA RCLK XTALIN XTALOUT AIS LOS TTIP TGND
5 6 7 8 9 10 11 12 13 14 15 16 17 18 top view 4 3 2 1 28 27 26 25 24 23 22 21 20 19
TAOS LLOOP RLOOP LEN2 LEN1 LEN0 RGND RV+ RRING RTIP PCS RCODE TRING TV+
22
DS40F3
-XO &21),'(17,$/
CS61535A
Host Mode
ACLKI 1 0RGH 28 CLKE +RVW 3LQRXW TCLK 2 SCLK 27 TPOS 3 CS 26 TNEG 4 SDO 25 MODE 5 SDI 24 RNEG 6 INT 23 RPOS 7 RGND 22 RCLK 8 RV+ 21 XTALIN 9 RRING 20 XTALOUT 10 RTIP 19 18 DPM 11 MRING 17 LOS 12 MTIP 16 TTIP 13 TRING 15 TGND 14 TV+
ACLKI TCLK TPOS TNEG MODE RNEG RPOS RCLK XTALIN XTALOUT DPM LOS TTIP TGND
5 6 7 8 9 10 11 12 13 14 15 16 17 18 top view 4 3 2 1 28 27 26 25 24 23 22 21 20 19
CLKE SCLK CS SDO SDI INT RGND RV+ RRING RTIP MRING MTIP TRING TV+
DS40F3
23
-XO &21),'(17,$/
Power Supplies RGND - Ground, Pin 22. 3RZHU VXSSO\ JURXQG IRU DOO VXEFLUFXLWV H[FHSW WKH WUDQVPLW GULYHU W\SLFDOO\ 9ROWV RV+ - Power Supply, Pin 21. 3RZHU VXSSO\ IRU DOO VXEFLUFXLWV H[FHSW WKH WUDQVPLW GULYHU W\SLFDOO\ 9ROWV TGND - Ground, Transmit Driver, Pin 14. 3RZHU VXSSO\ JURXQG IRU WKH WUDQVPLW GULYHU W\SLFDOO\ 9ROWV
CS61535A
TV+ - Power Supply, Transmit Driver, Pin 15. 3RZHU VXSSO\ IRU WKH WUDQVPLW GULYHU W\SLFDOO\ 9ROWV 79 PXVW QRW H[FHHG 59 E\ PRUH WKDQ 9 Oscillator XTALIN, XTALOUT - Crystal Connections, Pins 9 and 10. $ 0+] RU 0+] FU\VWDO VKRXOG EH FRQQHFWHG DFURVV WKHVH SLQV ,I D 0+] RU 0+] FO RFN LV SURYLGHG RQ $&/., SLQ WKH MLWWHU DWWHQXDWRU PD\ EH GLVDEOHG E\ W\LQJ ;7$/,1 3LQ WR 59 WKURXJK D N UHVLVWRU DQG IORDWLQJ ;7$/287 3LQ 2YHUGULYLQJ WKH RVFLOODWRU ZLWK DQ H[WHUQDO FORFN LV QRW VXSSRUWHG See Appendix A for crystal specifications. Control ACLKI - Alternate External Clock Input, Pin 1. 7KH &6$ GRHV QRW UHTXLUH D FORFN VLJQDO WR EH LQSXW RQ $&/., ZKHQ D FU\VWDO LV FRQQHFWHG EHWZHHQ S LQV DQ G ,I D FOR FN L V Q RW S URYLGHG RQ $& /., WK LV LQS XW PXV W E H JUR XQGHG ,I $&/., LV JURXQGHG WKH RVFLOODWRU LQ WKH MLWWHU DWWHQXDWRU LV XVHG WR FDOLEUDWH WKH FORFN UHFRYHU\ FLUFXLW DQG 7$26 LV QRW DYDLODEOH CLKE - Clock Edge, Pin 28. (Host Mode) 6HWWLQJ &/.( WR ORJ LF FDXVHV 5326 DQG 51(* WR EH YDO LG RQ WKH IDOOLQJ HGJH RI 5&/. DQG 6'2 WR EH YDOLG RQ WKH ULVLQJ HGJH RI 6&/. &RQYHUVHO\ VHWWLQJ &/.( WR ORJLF FDXVHV 5326 DQG 51(* WR EH YDO LG RQ WKH ULVLQJ HGJH RI 5&/. DQG 6'2 WR EH YDO LG RQ WKH IDOOLQJ HGJH RI 6&/. CS - Chip Select, Pin 26. (Host Mode) 7KLV SLQ PXVW WUDQVLWLRQ IURP KLJK WR ORZ WR UHDG RU ZULWH WKH VHULDO SRUW INT - Receive Alarm Interrupt, Pin 23. (Host Mode) *RHV ORZ ZKHQ /26 RU '30 FKD QJH VWDWH WR IODJ WKH KRVW SURFHVVRU ,17 LV FOHDUHG E\ ZULWLQJ &OHDU /26 RU &OHDU '30 WR WKH UHJLVWHU ,17 LV DQ R SHQ GUDLQ RXWSXW DQG VKRXOG EH WLHG WR WKH SRZHU VXSSO\ WKURXJK D UHVLVWRU
24
DS40F3
-XO &21),'(17,$/
CS61535A
LEN0, LEN1, LEN2 - Line Length Selection, Pins 23, 24 and 25. (Hardware and Extended Hardware Modes) 'HWHUPLQHV WKH VKDSH DQG DPSOLWXGH RI WKH WUDQVPLWWHG SXOVH WR DFFRPPRGDWH VHYHUDO FDEOH W\SHV DQG OHQ JWKV 6HH 7 DEOH IRU LQIR UPDWLRQ RQ OLQ H OHQJWK V HOHFWLRQ $OVR FRQ WUROV WKH UHFHLYHU VOLFLQJ OHYHO DQG WKH OLQH FRGH LQ ([WHQGHG +DUGZDUH 0RGH LLOOP - Local Loopback, Pin 27. (Hardware and Extended Hardware Modes) 6HWWLQJ //223 WR D ORJLF URXWHV WKH WUDQVPLW FORFN DQG GDWD WKURXJK WR W KH UHFHLYH FORFN DQG GDWD SLQV 732671(* RU 7'$7$ DUH VWLOO WUDQVPLWWHG XQOHVV RYHUULGGHQ E\ D 7$26 UHTXHVW ,QSXWV RQ 57,3 DQG 55,1* DUH LJQRUHG MODE - Mode Select, Pin 5. 'ULYLQJ W KH 02'( S LQ KLJK S XWV W KH &6$ OL QH LQWHUIDFH L Q W KH +RVW 0R GH ,Q WK H K RVW PRGH D VHULDO FRQWURO SRUW LV XVHG WR FRQWURO WKH &6$ OLQH LQWHUIDFH DQG GHWHUPLQH LWV VWDWXV *URXQGLQJ WKH 02 '( SLQ SXW V WKH &6 $ OL QH L QWHUIDFH LQ WKH +D UGZDUH 0 RGH Z KHUH FRQILJXUDWLRQ DQG VWDWXV DUH FRQWUROOHG E\ GLVFUHWH SLQV )ORDWLQJ WKH 02'( SLQ RU GULYLQJ LW WR 9 SX WV WK H & 6$ LQ ([WHQGHG +DU GZDUH 0R GH ZKH UH FR QILJXUDWLRQ DQG VW DWXV D UH FRQWUROOHG E\ GL VFUHWH SLQV :KHQ IORD WLQJ 02'( WKH UH VKRXOG EH QR H[W HUQDO ORDG RQ WKH SLQ 02'( GHILQHV WKH VWDWXV RI SLQV VHH 7DEOH PCS - Parallel Chip Select, Pin 18. (Extended Hardware Mode) 6HWWLQJ 3&6 K LJK FDX VHV W KH & 6$ O LQH LQW HUIDFH WR LJQ RUH W KH 7&2'( 5&2'( / (1 /(1 /(1 5/223 //223 DQG 7$26 LQSXWV RCODE - Receiver Decoder Select, Pin 17. (Extended Hardware Mode) 6HWWLQJ 5&2'( O RZ HQ DEOHV %= 6 RU +'% ]H UR V XEVWLWXWLRQ LQ W KH UHF HLYHU GHF RGHU 6HW WLQJ 5&2'( KLJK HQDEOHV WKH $0, UHFHLYHU GHFRGHU VHH 7DEOH RLOOP - Remote Loopback, Pin 26. (Hardware and Extended Hardware Modes) 6HWWLQJ 5/ 223 WR D OR JLF FDXVHV WKH UHFRYHUHG FORFN DQG GDWD WR EH V HQW WKUR XJK WKH MLWWHU DWWHQXDWRU LI DFWLYH DQG WKURXJK WKH GULYHU EDFN WR WKH OLQH 7KH UHFRYHUHG VLJQDO LV DOVR VHQW WR 5&/. DQG 532651(* RU 5'$7$ $Q\ 7$26 UHTXHVW LV LJQRUHG 6LPXOWDQHRXVO\ WDNLQJ 5/223 DQG //223 KLJK IRU DW OHDVW QV LQLWLDWHV D GHYLFH UHVHW SCLK - Serial Clock, Pin 27. (Host Mode) &ORFN XVHG WR UHDG RU ZULWH WKH VHULDO SRUW UHJLVWHUV 6&/. FDQ EH HLWKHU KLJK RU ORZ ZKHQ WKH OLQH LQWHUIDFH LV VHOHFWHG XVLQJ WKH &6 SLQ SDI - Serial Data Input, Pin 24. (Host Mode) 'DWD IRU WKH RQFKLS UHJLVWHU 6DPSOHG RQ WKH ULVLQJ HGJH RI 6&/. SDO - Serial Data Output, Pin 25. (Host Mode) 6WDWXV DQ G FR QWURO LQIR UPDWLRQ IURP WKH RQ FKLS UHJL VWHU ,I &/ .( LV KL JK 6'2 LV YDOLG RQ WK H ULVLQJ HGJH RI 6&/. ,I &/.( LV ORZ 6'2 LV YDOLG RQ WKH IDOOLQJ HGJH RI 6&/. 7KLV SLQ JRHV WR D KLJKLPSHGDQFH VWDWH ZKHQ WKH VHULDO SRUW LV EHLQJ ZULWWHQ WR RU DIWHU ELW ' LV RXWSXW
DS40F3
25
-XO &21),'(17,$/
CS61535A
TAOS - Transmit All Ones Select, Pin 28. (Hardware and Extended Hardware Modes) 6HWWLQJ 7$26 WR D ORJLF FDXVHV FRQWLQXRXV RQHV WR EH WUDQVPLWWHG DW WKH IUHTXHQF\ GHWHUPLQHG E\ $&/., TCODE - Transmitter Encoder Select, Pin 4. (Extended Hardware Mode) 6HWWLQJ 7&2'( ORZ HQDEOHV %=6 RU +'% ]H UR VXEVWLWXWLRQ LQ WKH WUDQVPLWWHU HQFRGHU 6HWWLQJ 7&2'( KLJK HQDEOHV WKH $0, WUDQVPLWWHU HQFRGHU Data RCLK - Recovered Clock, Pin 8. 7KH UHFHLYHU UHFRYHUHG FORFN LV RXWSXW RQ WKLV SLQ RDATA - Receive Data - Pin 7. (Extended Hardware Mode) 'DWD UHFRYHUHG IURP WKH 57,3 DQG 55,1* LQSXWV LV RXWSXW DW WKLV SLQ DIWHU EHLQJ GHFRGHG E\ WKH OLQH FRGH GHFRGHU 5'$7$ LV 15= 5'$7$ LV VWDEOH DQG YDOLG RQ WKH IDOOLQJ HGJH RI 5&/. RPOS, RNEG - Receive Positive Data, Receive Negative Data, Pins 6 and 7. (Hardware and Host Modes) 7KH UHFHLYHU UHFRYHUHG 15= GLJLWDO GDWD LV RXWSXW RQ WKHVH SLQV ,Q WKH +DUGZDUH 0RGH 5326 DQG 51(* DUH VWDEOH DQG YDOLG RQ WKH ULVLQJ HGJH RI 5&/. ,Q WKH +RVW 0RGH &/.( GHWHUPLQHV WKH FOR FN HG JH IRU ZKL FK 5326 DQ G 51( * DUH VWDEOH DQG YDOLG 6HH 7DEOH $ SRV LWLYH SXOVH ZLWK UHV SHFW W R JURX QG UHF HLYHG RQ WKH 57,3 SLQ JHQHUDWHV D OR JLF RQ 5326 DQG D SR VLWLYH SXOVH UHFHLYHG RQ WKH 55,1* SLQ JHQHUDWHV D ORJLF RQ 51(* RTIP, RRING - Receive Tip, Receive Ring, Pins 19 and 20. 7KH $0, UHF HLYH V LJQDO LV L QSXW W R W KHVH SLQV $ FHQWHUWDSSHG FH QWHUJURXQGHG VWHSXS WUDQVIRUPHU LV UHTXLUHG RQ WKHVH LQSXWV DV VKRZQ LQ )LJ XUH $ LQ WKH Applications VHFWLRQ 'DWD DQG FORFN DUH UHFRYHUHG DQG RXWSXW RQ 5&/. DQG 532651(* RU 5'$7$ TCLK - Transmit Clock, Pin 2. 7KH 0+] RU 0+] WUDQVPLW FORFN LV LQSXW RQ WKLV SLQ 732671(* RU 7 '$7$ DUH VDPSOHG RQ WKH IDOOLQJ HGJH RI 7&/. TDATA - Transmit Data, Pin 3. (Extended Hardware Mode) 7UDQVPLWWHU 15= LQSXW GDWD ZKLFK SDVVHV WKURXJK WKH OLQH FRGH HQFRGHU DQG LV WKHQ GULYHQ RQ WR WKH OLQH WKURXJK 77,3 DQG 75,1* 7'$7$ LV VDPSOHG RQ WKH IDOOLQJ HGJH RI 7&/. TPOS, TNEG - Transmit Positive Data, Transmit Negative Data, Pins 3 and 4. (Hardware and Host Modes) ,QSXWV IRU FORFN DQG GDWD WR EH WUDQVPLWWHG 7KH VLJQDO LV GULYHQ RQ W R WKH OLQH WKURXJK 77,3 DQG 75,1* 7 326 D QG 71(* D UH V DPSOHG RQ WKH IDO OLQJ H GJH RI 7&/. $ 7326 LQSXW FDXVHV D SRVLWLYH SXOVH WR EH WUDQVPLWWHG ZKLOH D 71(* LQSXW FDXVHV D QHJDWLYH SXOVH WR EH WUDQVPLWWHG TTIP, TRING - Transmit Tip, Transmit Ring, Pins 13 and 16. 7KH $0, VLJQDO LV GULYHQ WR WKH OLQH WKURXJK WKHVH SLQV ,Q WKH &6$ WKLV RXWSXW LV GHVLJQHG WR GULYH D ORDG $ RU WUDQVIRUPHU LV UHTXLUHG DV VKRZQ LQ )LJXUH $
26 DS40F3
-XO &21),'(17,$/
Status
CS61535A
AIS - Alarm Indication Signal, Pin 11. (Extended Hardware Mode) $,6 J RHV K LJK ZK HQ X QIUDPHG D OORQHV F RQGLWLRQ E OXH D ODUP L V G HWHFWHG X VLQJ WKH G HWHFWLRQ FULWHULD RI OHVV WKDQ WKUHH ]HURV RXW RI ELW SHULRGV BPV- Bipolar Violation Strobe, Pin 6. (Extended Hardware Mode) %39 VWUREHV KLJK ZKHQ D ELSRODU YLRODWLRQ LV GHWHFWHG LQ WKH UHFHLYHG VLJQDO %=6 RU +'% ]HUR VXEVWLWXWLRQV DUH QRW IODJJHG DV ELSRODU YLRODWLRQV LI WKH %=6 RU +'% GHFRGHU KDV EHHQ HQDEOHG DPM - Driver Performance Monitor, Pin 11. (Hardware and Host Modes) '30 JRHV KLJK LI QR DFWLYLW\ LV GHWHFWHG RQ 07,3 DQG 05,1* LOS - Loss of Signal, Pin 12. /26 JRHV KLJK ZKHQ FRQVHFXWLYH ]HURV KDYH EHHQ UHFHLYHG )RU WKH &6$ /26 UHWXUQV ORZ Z KHQ WKH RQH V G HQVLW\ U HDFKHV EDVHG X SRQ ELW SHULRGV VWDUWLQJ Z LWK D RQH DQ G FRQWDLQLQJ OHVV WKDQ FRQVHFXWLYH ]HURV DV SUHVFULEHG E\ $16, 7 MTIP, MRING - Monitor Tip, Monitor Ring, Pins 17 and 18. (Hardware and Host Modes) 7KHVH SLQV DUH QRUPDOO\ FRQQHFWHG WR 77,3 DQG 75,1* DQG PRQLWRU WKH RXWSXW RI D &6$ ,I WKH ,17 SLQ LQ WKH KRVW PRGH LV XVHG DQG WKH PRQLWRU LV QRW XVHG ZULWLQJ &OHDU '30 WR WKH VHULDO LQWHUIDFH ZLOO SUHYHQW DQ LQWHUUXSW IURP WKH GULYHU SHUIRUPDQFH PRQLWRU
DS40F3
27
-XO &21),'(17,$/
CS61535A
28
15 E1
1
14
28 pin Plastic DIP
D A A1 e1 B L
SEATING PLANE B1
C eA
NOTES: 1. POSITIONAL TOLERANCE OF LEADS SHALL BE WITHIN 0.25mm (0.010") AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION eA TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.
MILLIMETERS INCHES DIM MIN NOM MAX MIN NOM MAX 3.94 4.32 5.08 0.155 0.170 0.200 A A1 0.51 0.76 1.02 0.020 0.030 0.040 B 0.36 0.46 0.56 0.014 0.018 0.022 B1 1.02 1.27 1.65 0.040 0.050 0.065 0.20 0.25 0.38 0.008 0.010 0.015 C 36.45 36.83 37.21 1.435 1.450 1.465 D E1 13.72 13.97 14.22 0.540 0.550 0.560 e1 2.41 2.54 2.67 0.095 0.100 0.105 eA 15.24 15.87 0.600 0.625 L 3.18 0.150 3.81 0.125 0 15 15 0
28-pin PLCC
28
E1 E
MILLIMETERS INCHES
DIM A A1 B
MIN NOM MAX 4.20 2.29 0.33 4.45 2.79 0.41
MIN NOM MAX
4.57 0.165 0.175 0.180 3.04 0.090 0.110 0.120 0.53 0.013 0.016 0.021
D/E 12.32 12.45 12.57 0.485 0.490 0.495
D1
D1/E1 11.43 11.51 11.58 0.450 0.453 0.456 D2/E2 9.91 10.41 10.92 0.390 0.410 0.430 e 1.19 1.27 1.35 0.047 0.050 0.053
D
B
e A1 D2/E2 A
28
DS40F3
-XO &21),'(17,$/
APPLICATIONS
+5V + 68 F RGND 28 Control & Monitor 1 12 11 RV+ 5 7 6 Frame Format Encoder/ Decoder 8 3 4 2 9 XTL 10 CLKE ACLKI
LOS
CS61535A
0.1 F 21 RV+ 15 TV+
+
1.0 F TGND
+5V 100 k
SCLK CS
INT
27 26 23 24 25 P Serial Port
DPM
SDI SDO
MODE RPOS RNEG RCLK
TPOS
CS61535A IN HOST MODE
RTIP
19 R1 20 17 18 16 13 0.47 F R2
CT 2:1 RECEIVE LINE
RRING
MTIP
TNEG TCLK
XTALIN XTALOUT RGND 22
MRING TRING
TGND 14 TTIP
TRANSMIT LINE
DEVICE
CS61535A
FREQUENCY MHz 1.544 2.048 2.048
CABLE 100 120 75
R1&2 200 240 150
Transmit Transformer 1:1.15 1:1.26 1:1
Figure A1. Host Mode Configuration
Line Interface )LJXUHV $ $ V KRZ W KH W \SLFDO FRQ ILJXUDWLRQV IRU L QWHUIDFLQJ W KH , & WR D OLQH WKURXJK WUD QVPLW DQG UHFHLYH WUDQVIRUPHUV 7KH U HFHLYHU WU DQVIRUPHU L V FHQ WHU W DSSHG D QG FHQWHU JURXQGHG ZLWK UHVLVWRUV EHWZHHQ WKH FHQWHU WDS DQG HDFK OHJ RQ WKH ,& VLGH 7KHVH UHVLVWRUV SURYLGH WKH WHUPLQDWLRQ IRU WKH OLQH )LJXUHV $$ VKRZ D ) FDSDFLWRU LQ VHULHV ZLWK WKH WU DQVPLW WU DQVIRUPHU SU LPDU\ 7K LV FD SDFLWRU L V QHHGHG WR SUH YHQW DQ \ EX LOGXS L Q WK H
DS40F3
FRUH RI WK H WUDQVIRUPHU GXH WR DQ\ '& LPEDODQFH WKDW P D\ EH SU HVHQW DW WKH GL IIHUHQWLDO R XWSXWV 77,3 D QG 7 5,1* ,I '& VD WXUDWHV WKH WUD QV IRUPHU D ' & RI IVHW Z LOO U HVXOW GX ULQJ W KH WUDQVPLVVLRQ RI D V SDFH ]HUR D V W KH W UDQVIRUPHU WULHV W R GX PS WK H FK DUJH D QG U HWXUQ WR H TXLOLE ULXP 7 KH EOR FNLQJ F DSDFLWRU ZL OO N HHS ' & FXUUHQW IURP IORZLQJ LQ WKH WUDQVIRUPHU Selecting an Oscillator Crystal 6SHFLILF FU \VWDO S DUDPHWHUV DU H U HTXLUHG I RU SURSHU RSH UDWLRQ RI WK H &6 $ Refer to
29
-XO &21),'(17,$/
+5V + 68 F RGND 28 1 Control & Monitor 26 27 12 11 5 7 6 Frame Format Encoder/ Decoder 8 3 4 2 9
XTL
CS61535A
0.1 F 21 RV+ 15 TV+
+
1.0 F TGND
TAOS ACLKI
RLOOP
LEN0
23 24 25
LLOOP LOS DPM MODE RPOS RNEG RCLK TPOS TNEG
TCLK
LEN1 LEN2
Line Length Setting
CS61535A IN HARDWARE MODE
RTIP
19 R1 20 R2
CT 2:1
RECEIVE LINE
RRING
MTIP MRING
TRING
17 18 16 13 0.47 F TRANSMIT LINE
XTALIN XTALOUT RGND 22 TGND 14
TTIP
10
Figure A2. Hardware Mode Configuration
+5V + 68 F RGND 17 18 6 28 Control & Monitor 1 26 27 12 11 5 4 7 Frame Format Encoder/ Decoder 8 3 2 9
XTL
0.1 F 21 RV+ 15 TV+
+
1.0 F TGND
RCODE PCS
BPV
LEN0
23 24 25
TAOS ACLKI RLOOP
LLOOP
LEN1 LEN2
Line Length Setting
LOS AIS MODE
TCODE RDATA
CS61535A IN EXTENDED HARDWARE MODE
RTIP
19 R1 20 R2
CT 2:1 RECEIVE LINE
RRING
RCLK TDATA TCLK XTALIN XTALOUT RGND 22 TGND 14
TRING
16 13
0.47 F TRANSMIT LINE
TTIP
10
Figure A3. Extended Hardware Mode Configuration 30 DS40F3
-XO &21),'(17,$/
CS61535A
Appendix A for crystal specifications Interfacing The CS61535A With the CS62180B T1 Transceiver 7R LQWHUIDFH ZLWK WKH &6% FRQQHFW WKH GH YLFHV D V V KRZQ L Q ) LJXUH $ ,Q WKL V FDV H WKH &6$ DQG &6% DUH LQ +RVW 0RGH FRQ WUROOHG E\ D PLFURSURFHVVRU VHULDO LQWHUIDFH ,I WKH &6$ LV XV HG LQ +DUGZD UH 0RGH WK HQ WK H &6$ 5&/. RXWSXW PXVW EH LQYHUWHG EHIRUH EHLQJ LQSXW WR WKH &6% ,I WKH &6$ LV XVHG LQ ([WHQGHG +DUGZDUH 0RGH WKH &6$ 5&/. RXWSXW GRHV QRW QHHG WR EH LQYHUWHG EHIRUH EHLQJ LQSXW WR WKH &6%
LQJ DSSOLFDWLRQV ZKHUH HL JKW EL WV FD Q E H G URSSHG IURP WK H FO RFNGDWD V WUHDP DW RQF H 6 LPLODUO\ WKHVH SD UWV FDQ EH XV HG LQ 6 21(7 DSSOLFDWLRQV ZLWK WKH DGGLWLRQ RI VRPH H[WHUQDO FLUFXLWU\ 7KH PDLQ GL IIHUHQFHV RI WKH &6 $ UHO DWLYH WR WKH &6 LV 2Q WK H &6 $ V HOHFWLRQ RI / (1 FK DQJHV WKH YROWDJH DW ZKLF K WKH UHFHLYHU DFFHSWV DQ LQSXW DV D SX OVH VOLFLQJ O HYHO I URP WR RI WK H SHDN SXOVH DPSOLWXGH /RZHU LQJ W KH G DWD V OLFLQJ O HYHO ZLO O LPSUR YH UH FHLYHU VHQVLWLYLW\ DW O RQJ FDE OH O HQJWKV ZKH Q WKH GDWD LV MLWWHUHG $ V OLFLQJ OHY HO Z LOO DO VR LP SURYH FURVVWDON VH QVLWLYLW\ I RU FKD QQHOV ZKHUH U HFHLYHG SXOVHV GR QRW KDYH XQGHUVKRRW 7KHUH DUH GLIIHUHQFHV LQ WKH IXQFWLRQDOLW\ RI WKH $&/., $ &/. L QSXW R Q W KH & 6 D QG &6$ $&./, $&/. LV XVHG DV WKH WUDQV PLW FO RFN LQ WK H W UDQVPLW DOO RQ HV 7$26 P RGH 2Q WK H & 6$ $& /., LV XV HG DV D F DOLEUD WLRQ U HIHUHQFH I RU WK H U HFHLYHU F ORFN U HFRYHU\ FLUFXLW D QG W KHUHIRUH P D\ QRW EH V XSSOLHG E\ 5&/. 2Q WKH &6 $&/. PD\ EH VXSSOLHG E\ 5&/. , I DQ H[WHUQDO FORFN LV QRW SURYLGH RQ WKH $&/., LQ SXW RI WKH &6 $ WK H FU\ VWDO RVFLOODWRU LV XV HG W R FD OLEUDWH WKH UHFH LYHU FOR FN UHFRYHU\ FLUFXLW 2Q WKH &6$ WKH +RVW 0RGH VWDWXV UHJLV WHU E LWV D QG DUH HQF RGHG V R WK DW V WDWH FKDQJHV RQ /26 DQG '30 PD\ EH UHSRUWHG 5&/. RQ WKH &6 KDV D GXW\ F\FOH ZKLOH 5&/ . RQ WKH &6 $ KDV D G XW\ F\F OH ZKLFK LV W\SLFDOO\ RU $ OVR W KH &6$ 5& /. GX W\ F\ FOH DQG LQVWDQWDQHRXV IUHTXHQF\ YDU\ ZLW K UHFH LYHG MLW WHU DQ G P D\ H[ KLELW 8,SS TXDQWL]DWLRQ MLWWHU HYHQ ZKHQ WKH LQFRPLQJ VLJQDO LV MLWWHU IUHH 7KH &6$ UHTXLUHV QV RI VHWXS WLPH RQ 7326 DQG 7 1(* EHI RUH WKH IDO OLQJ HG JH R I 7&/. DQG QV RI KRO G WLPH RQ WKHVH LQSXWV DI
31
TO HOST CONTROLLER
V+ 1.544 MHz CLOCK SIGNAL 100k ACLKI TCLK TPOS V+ 100k CLKE SCLK CS SDO SDI INT RGND 0V +5V 0.1uF V+ 22k 68uF +
SCLK SDO SDI CS
TCLK TPOS
TNEG
RNEG RPOS RCLK CS62180B
TNEG
MODE RNEG RPOS
RCLK RV+ CS61535A
Figure A4. Interfacing the CS61535A with the CS62180B (Host Mode)
CS61534 Compatibility 7KH &6 $ LV S LQ F RPSDWLEOH Z LWK W KH &6 7KH &6$ KDV JUHDWHU MLWWHU WROHU DQFH IRU ERWK WUDQV PLWWHU DQG UHFHLYHU DQG LW SURYLGHV P RUH M LWWHU D WWHQXDWLRQ V WDUWLQJ D W M LWWHU IUHTXHQFLHV RI +] 7K H JUH DWHU MLW WHU W ROHUDQFH DQG DWWHQXDWLRQ L Q WK H WU DQVPLW S DWK P DNHV WKH &6$ PRUH VXLWDEOH IRU &&,77 GHPXOWLSOH[
DS40F3
-XO &21),'(17,$/
WHU WKH IDO OLQJ HGJ H RI 7 &/. 7 KH &6 UH TXLUHV QV RI KR OG WL PH RQ 7 326 DQ G 7 1(* DIWHU W KH ID OOLQJ H GJH RI 7 &/ D QG QV RI V HWXS WLPH / 26 RF FXUV DIWH U FRQ VHFXWLYH ]HURV RQ WK H &6 )RU W KH & 6$ / 26 RF FXUV DIW HU ]HURV 6L QFH WKH &6 $ UHFH LYHUV D UH FR QWLQX RXVO\ FDO LEUDWHG WK HUH LV QR QH HG WR LVVXH D UHVHW WR LQL WLDOL]H WK H U HFHLYHU W LPLQJ D V Z LWK W KH &6 Using the CS61535A for SONET 7KH &6$ FDQ EH DSSOLHG WR 621( 7 97 DQG 97 LQ WHUIDFH F LUFXLWV DV V KRZQ LQ )L J XUH $ 7KH 621(7 GDWD UDWH LV 0+] DQG KDV E LWV S HU IUD PH XV SH U IUD PH $Q LQGLYLGXDO 7 IUDPH ELWV SHU IUDPH RU 3&0
CS61535A
IUDPH ELWV SHU IUDPH KDV LWV GDWD PDSSHG LQWR WKH E LW 6 21(7 IU DPH 7 KH P DSSLQJ GRHV QR W U HVXOW LQ D XQ LIRUP V SDFLQJ EHW ZHHQ VXFHVVLYH 7 RU ( ELWV 5DWKHU IRU ORFNHG 97 DSSOLFDWLRQV JDSV DV ODUJH DV 7 ELW SHULRGV RU ( EL W SH ULRGV FD Q H[L VW EHWZHHQ V XFFHVVLYH ELWV : LWK IO RDWLQJ 97 V WKH JDS V F DQ E H HYHQ ODUJHU 7KH FL UFXLW L Q ) LJXUH $ HOL PLQDWHV WKH GHP XOWL SOH[LQJ MLWWHU LQ D WZ RVWHS DSS URDFK 7KH I LUVW VWHS XV HV D ) ,)2 ZK LFK LV ILOOHG DW D 0+] UDWH ZKHQ 7 RU ( ELWV DUH SUHVHQW DQG ZKLFK LV HPSWLHG DW D VXEPXOWLSOH RI WKH UDWH 7KH ),)2 LV H PSWLHG R QO\ ZKHQ LW F RQWDLQV G DWD :KHQ WK H ),)2 LV HPSW \ WK H RXW SXW FORFN LV QRW SXOVHG 7KH V XEPXOWLSOH UD WH FKRVHQ VKRXOG E H V OLJKWO\ IDVWHU WKDQ WKH WDUJHW UDWH RU 0+] EXW DV FORVH WR WKH WDU JHW U DWH DV SRV VLEOH ) RU
51.84 MHz Div By
TCLK1
Empty
6480 to 193 bit (or 256 bit) Mapping Circuit
FIFO
Write Clock TSER
TCLK2 TPOS TNEG
Jitter Attenuator
Driver
TSER
CS62180B FIFO
RSER RPOS RNEG RCLK2 RCLK2
CS61535A Receiver
RSER
RCLK1
Figure A5. SONET Application
32
DS40F3
-XO &21),'(17,$/
ORFNHG 97 RS HUDWLRQ 7DEOH $ V KRZV SR WHQWLDO VXEPXOWLSOH G DWD UDWH V DQ G WK H LP SDFW RQ WK RVH UDWHV RQ WKH PD[LPXP JDS LQ WKH RXWSXW FORFN RI WKH ), )2 DQG GHSWK RI ) ,)2 UHTXLUHG ) ,)2 GHSWK ZLOO KD YH WR EH LQF UHDVHG IRU IORD WLQJ 97 RSHUDWLRQ ZLWK ELW V RI ),)2 GHSWK EHLQJ DGGHG IRU HDFK SRLQWHU DOLJQPHQW FKDQJH WKDW FDQ RFFXU 7KH R EMHFWLYH WKDW V KRXOG EH P HW LQ SLFNLQJ D ),)2 G HSWK D QG F ORFN GL YLGHU LV NH HS W KH PD[L PXP JDS RQ WKH RXWSXW RI WKH ),)2 DW ELW V RU OHVV 7ZHOYH ELWV LV WKH PD[LPXP MLWWHU ZKLFK FDQ EH LQSXW WR WKH &6$V MLWWHU DWWHQXDWRU ZLWK RXW FDXV LQJ WKH RYHU IORZXQGHIORZ SURWHFWLRQ FLUFXLW WR RS HUDWH 7KH &6$ WKH Q UHPRYHV WKH UHPDLQLQJ MLWWHU IURP WKH VLJQDO 7KH U HFHLYH SDWK DOV R U HTXLUHV D ELW P DSSLQJ IURP RU ELWV WR ELWV 7KLV PDSSLQJ UHTXLUHV DQ LQSXW EXI IHU ZLW K WKH VDPH GH SWK DV XVH RQ WKH WUDQVPLW SDWK 7KLV EXIIHU DOVR DEVRUEV WKH R XWSXW M LWWHU JH QHUDWHG E\ W KH & 6$V GLJLWDO FORFN UHFRYHU\
Target Rate (MHz) 1.544 1.544 2.048 Clock Divider 32 33 25 Resultant Rate (MHz) 1.620 1.571 2.074
CS61535A
Transformers 5HFRPPHQGHG WUDQ VPLWWHU DQG U HFHLYHU WUDQV IRUPHU VS HFLILFDWLRQV I RU WK H &6 $ DU H VKRZQ LQ 7DEOH $ 7KH WUDQVIRUPHUV LQ 7DEOH $ KDYH E HHQ W HVWHG D QG UHFRPPHQGHG I RU XVH ZL WK WKH &6$ 5HIHU WR WKH 7 HOHFRP 7 UDQV IRUPHU 6HOHFWLRQ *XLG H IRU GHW DLOHG V FKHPDWLFV ZKLFK VKRZ KRZ WR FRQ QHFW WKH OLQ H LQWHUIDFH ,& ZLWK D SDUWLFXODU WUDQVIRUPHU ,Q DSSOLFDWLRQV ZLWK WKH &6$ ZKHUH LW LV DG YDQWDJHRXV WR XVH D VLQJOH WUDQVPLWWHU WUDQVIRUPHU IRU ERWK DQG ( DSSOLFDWLRQV D WUDQVIRUHU PD\ EH XV HG $OWK RXJK WUDQ VPLWWHU UH WXUQ ORVV ZLOO EH UHGXFHG IRU DSSOLFDWLRQV WKH SXOVH DP SOLWXGH Z LOO EH FRUUHFW DFU RVV D ORDG
Maximum Gap bits (s) 6.2 10 3.9 6 3.4 7
FIFO Depth Required 21 26 34
Table A1. Locked VT FIFO Analysis Parameter Turns Ratio CS61535A Receiver 1:2 CT 5% CS61535A Transmitter 1:1 1.5 % for 75 E1 1:1.15 5 % for 100 T1 1:1.26 1.5 % for 120 E1 1.5 mH min. @ 772 kHz 0.3 H max. @ 772 kHz 0.4 H max. @ 772 kHz 18 pF max. 16 V-s min. for T1 12 V-s min. for E1
Primary Inductance Primary Leakage Inductance Secondary Leakage Inductance Interwinding Capacitance ET-constant
600 H min. @ 772 kHz 1.3 H max. @ 772 kHz 0.4 H max. @ 772 kHz 23 pF max. 16 V-s min. for T1 12 V-s min. for E1
Table A2. Transformer Specifications DS40F3 33
-XO &21),'(17,$/
CS61535A
Application RX: T1 & E1 TX: T1 TX: E1 (75 & 120 ) RX &TX: T1 RX &TX: E1 (75 & 120 ) RX &TX: T1 RX &TX: E1 (75 & 120 ) RX : T1 & E1 TX: E1 (75 & 120 )
Turns Ratio(s) 1:2CT
Manufacturer Pulse Engineering Schott Bel Fuse Pulse Engineering Schott Bel Fuse Pulse Engineering Schott Bel Fuse Pulse Engineering Bel Fuse Pulse Engineering Bel Fuse Pulse Engineering Bel Fuse Pulse Engineering Bel Fuse Pulse Engineering Pulse Engineering
Part Number PE-65351 67129300 0553-0013-HC PE-65388 67129310 0553-0013-RC PE-65389 67129320 0553-0013-SC PE-65565 0553-0013-7J PE-65566 0553-0013-8J PE-65765 S553-0013-06 PE-65766 S553-0013-07 PE-65835 PE-65839
Package Type 1.5 kV through-hole, single
1:1.15
1.5 kV through-hole, single
1:1.26 1:1 1:2CT 1:1.15 1:2CT 1:1.26 1:1 1:2CT 1:1.15 1:2CT 1:1.26 1:1 1:2CT 1:1.26 1:1
1.5 kV through-hole, single
1.5 kV through-hole, dual 1.5 kV through-hole, dual
1.5 kVsurface-mount, dual 1.5 kV surface-mount, dual
3 kV through-hole, single EN60950, EN41003 approved 3 kV through-hole, single EN60950, EN41003 approved
Table A3. Recommended Transformers For The CS61535A
34
DS40F3
CS61535A
APPENDIX A. RECOMMENDED CRYSTAL SPECIFICATIONS
Cirrus Logic telecommunication devices that offer jitter attenuation require crystals with specifications for frequency pullability. The crystal oscillation frequency is dictated by capacitive loading, which is controlled by the chip. Therefore, the crystals must meet the following specifications.
6.176 MHz Crystal Performance Specifications
Parameter Total Frequency Range Operating Frequency Cload = 11.6 pF Cload = 19.0 pF Cload = 37.0 pF (Note 1) (Note 2) (Note 3) (Note 2) Min 6.176803 6.175846 Typ 370 6.176000 Max 390 6.176154 6.175197 Units ppm MHz MHz MHz
8.192 MHz Crystal Performance Specifications
Parameter Total Frequency Range Operating Frequency Cload = 11.6 pF Cload = 19.0 pF Cload = 37.0 pF (Note 1) (Note 2) (Note 3) (Note 2) Min 8.192410 8.191795 Typ 210 8.192000 Max 245 8.192205 8.191590 Units ppm MHz MHz MHz
Notes:
1. With Cload varying from 11.6 to 37.0 pF at a given temperature. 2. Measured at -40 to 85C. 3. Measured with Saunders 150D meter at 25 C.
DS40F3
35
CS61535A
REVISION HISTORY
Revision
F3
Date
Jul '09
Changes
Removed development system info. (No longer supported). Removed PDIP option. Changed PLCC package option to lead-free.
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find one nearest you go to http://www.cirrus.com
IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
36
DS40F3


▲Up To Search▲   

 
Price & Availability of CS61535A09

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X